Combinatorics/Algebra
Are the hyperharmonics integral? A partial answer via the small intervals containing primes
[Les hyperharmoniques sont-ils entiers ? Une réponse partielle via les petits intervalles contenant des nombres premiers]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 115-117.

Voir la notice de l'article provenant de la source Numdam

In a recent work, the authors have used Bertrand's postulate to give a partial answer to the conjecture of Mező which says that the hyperharmonic numbers – iterations of partial sums of harmonic numbers – are not integers. In this Note, using small intervals containing prime numbers, we prove that a great class of hyperharmonic numbers are not integers.

Dans un travail antérieur, les auteurs ont utilisé le postulat de Bertrand pour répondre, partiellement, à la conjecture de Mező selon laquelle les nombres hyperharmoniques – itérations de sommes partielles de nombres harmoniques – ne sont pas des entiers. Dans cette Note, nous montrons qu'une grande classe de nombres hyperharmoniques ne sont pas des entiers en utilisant les petits intervalles contenant des nombres premiers.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.12.015

Aït Amrane, Rachid 1 ; Belbachir, Hacène 2

1 ESI/École nationale supérieure d'informatique, BP 68M, Oued Smar, 16309, El Harrach, Alger, Algeria
2 USTHB, faculté de mathématiques, BP 32, El Alia, 16111 Bab Ezzouar, Alger, Algeria
@article{CRMATH_2011__349_3-4_115_0,
     author = {A{\"\i}t Amrane, Rachid and Belbachir, Hac\`ene},
     title = {Are the hyperharmonics integral? {A} partial answer via the small intervals containing primes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {115--117},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.12.015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.015/}
}
TY  - JOUR
AU  - Aït Amrane, Rachid
AU  - Belbachir, Hacène
TI  - Are the hyperharmonics integral? A partial answer via the small intervals containing primes
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 115
EP  - 117
VL  - 349
IS  - 3-4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.015/
DO  - 10.1016/j.crma.2010.12.015
LA  - en
ID  - CRMATH_2011__349_3-4_115_0
ER  - 
%0 Journal Article
%A Aït Amrane, Rachid
%A Belbachir, Hacène
%T Are the hyperharmonics integral? A partial answer via the small intervals containing primes
%J Comptes Rendus. Mathématique
%D 2011
%P 115-117
%V 349
%N 3-4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.015/
%R 10.1016/j.crma.2010.12.015
%G en
%F CRMATH_2011__349_3-4_115_0
Aït Amrane, Rachid; Belbachir, Hacène. Are the hyperharmonics integral? A partial answer via the small intervals containing primes. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 115-117. doi : 10.1016/j.crma.2010.12.015. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.015/

[1] Aït Amrane, R.; Belbachir, H. Non-integerness of class of hyperharmonic numbers, Ann. Mathematicae et Informaticae, Volume 37 (2010), pp. 7-11

[2] Bazzanella, D.; Languasco, A.; Zaccagnini, A. Prime numbers in logarithmic intervals, 17 Sept. 2008 | arXiv

[3] Conway, J.H.; Guy, R.K. The Book of Numbers, Springer-Verlag, New York, 1996

[4] Giordano, G. The generalization and proof of Bertrand's Postulate, Internat. J. Math. & Math. Sci., Volume 10 (1987) no. 4, pp. 821-824

[5] Jia, C. Almost all short intervals containing prime numbers, Acta Arith., Volume LXXVLI (1996)

[6] Jitsuro, N. On the interval containing at least one prime number, Proc. Japan Acad., Volume 28 (1952), pp. 177-181

[7] Mező, I. About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budapest, Sect. Math., Volume 50 (2007), pp. 13-20

[8] Ramaré, O.; Saouter, Y. Short effective intervals containing primes, J. Number Theory, Volume 98 (2003), pp. 10-33

[9] Schoenfeld, L. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II, Math. Comp., Volume 30 (1976) no. 134, pp. 337-360

[10] Taeisinger, L. Bemerkung über die harmonische Reihe, Monatsch. Math. Phys., Volume 26 (1915), pp. 132-134

Cité par Sources :