Number Theory
Bounds on oscillatory integral operators
[Estimées sur les integrales oscillatoires]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 137-141.

Voir la notice de l'article provenant de la source Numdam

We present new estimates in E. Stein's Fourier restriction problem for curved hyper-surfaces in Rn and also on the mapping properties of the more general class of oscillatory integral operators introduced by L. Hörmander.

Nous présentons de nouvelles estimations dans le problème de E. Stein sur la restriction de Fourier à des hyper-surfaces à courbure dans Rn ainsi que sur les intégrales oscillatoires introduites par L. Hörmander.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.12.004

Bourgain, Jean 1 ; Guth, Lawrence 1

1 Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, Princeton, NJ 08540, USA
@article{CRMATH_2011__349_3-4_137_0,
     author = {Bourgain, Jean and Guth, Lawrence},
     title = {Bounds on oscillatory integral operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {137--141},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.12.004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.004/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Guth, Lawrence
TI  - Bounds on oscillatory integral operators
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 137
EP  - 141
VL  - 349
IS  - 3-4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.004/
DO  - 10.1016/j.crma.2010.12.004
LA  - en
ID  - CRMATH_2011__349_3-4_137_0
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Guth, Lawrence
%T Bounds on oscillatory integral operators
%J Comptes Rendus. Mathématique
%D 2011
%P 137-141
%V 349
%N 3-4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.004/
%R 10.1016/j.crma.2010.12.004
%G en
%F CRMATH_2011__349_3-4_137_0
Bourgain, Jean; Guth, Lawrence. Bounds on oscillatory integral operators. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 137-141. doi : 10.1016/j.crma.2010.12.004. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.12.004/

[1] Bennett, J.; Carbery, T.; Tao, T. On the multilinear restriction and Kakeya conjectures, Acta Math., Volume 196 (2006), pp. 261-302

[2] Bourgain, J. Some new estimates on oscillatory integrals, Annals Math. St., vol. 42, Princeton University Press, 1995, pp. 83-112

[3] Stein, E. Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis, Annals Math. St., vol. 112, Princeton University Press, 1986

[4] Tao, T. A sharp bilinear restriction estimate for the paraboloids, GAFA, Volume 13 (2003), pp. 1359-1384

[5] Wolff, T. An improved bound for Kakeya-type maximal functions, Rev. Mat. Iber., Volume 11 (1995) no. 3, pp. 651-674

Cité par Sources :