Voir la notice de l'article provenant de la source Numdam
In this Note, we compare the space VMO and the spaces
Dans cette Note, nous comparons l'espace VMO et les espaces
Brezis, Haïm 1 ; Nguyen, Hoai-Minh 2
@article{CRMATH_2011__349_3-4_157_0, author = {Brezis, Ha{\"\i}m and Nguyen, Hoai-Minh}, title = {On a new class of functions related to {\protect\emph{VMO}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--160}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.11.026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.026/} }
TY - JOUR AU - Brezis, Haïm AU - Nguyen, Hoai-Minh TI - On a new class of functions related to VMO JO - Comptes Rendus. Mathématique PY - 2011 SP - 157 EP - 160 VL - 349 IS - 3-4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.026/ DO - 10.1016/j.crma.2010.11.026 LA - en ID - CRMATH_2011__349_3-4_157_0 ER -
%0 Journal Article %A Brezis, Haïm %A Nguyen, Hoai-Minh %T On a new class of functions related to VMO %J Comptes Rendus. Mathématique %D 2011 %P 157-160 %V 349 %N 3-4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.026/ %R 10.1016/j.crma.2010.11.026 %G en %F CRMATH_2011__349_3-4_157_0
Brezis, Haïm; Nguyen, Hoai-Minh. On a new class of functions related to VMO. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 157-160. doi : 10.1016/j.crma.2010.11.026. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.026/
[1] A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 75-80
[2] Degree theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math., Volume 1 (1995), pp. 197-263
[3] H. Brezis, H.-M. Nguyen, On the distributional Jacobian of maps from into in fractional Sobolev and Hölder spaces, Ann. of Math., available online: 31 December 2009.
[4] On functions of bounded mean oscillation, Comm. Pure Appl. Math., Volume 14 (1961), pp. 415-426
[5] Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006), pp. 689-720
[6] Optimal constant in a new estimate for the degree, J. d'Analyse Math., Volume 101 (2007), pp. 367-395
[7] H.-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations, published online: 12 October 2010, . | DOI
Cité par Sources :