Voir la notice de l'article provenant de la source Numdam
In this work we propose a compact cell-centered Galerkin method with subgrid stabilization for anisotropic heterogeneous diffusion problems on general meshes. Both essential theoretical results and numerical validation are provided.
On propose une méthode de Galerkine centrée aux mailles avec stencil compact et stabilisation de sous-grille pour des problèmes de diffusion anisotrope et hétérogène. On présente à la fois les résultats théoriques essentiels et une validation numérique.
Di Pietro, Daniele A. 1
@article{CRMATH_2011__349_1-2_93_0, author = {Di Pietro, Daniele A.}, title = {A compact cell-centered {Galerkin} method with subgrid stabilization}, journal = {Comptes Rendus. Math\'ematique}, pages = {93--98}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.017/} }
TY - JOUR AU - Di Pietro, Daniele A. TI - A compact cell-centered Galerkin method with subgrid stabilization JO - Comptes Rendus. Mathématique PY - 2011 SP - 93 EP - 98 VL - 349 IS - 1-2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.017/ DO - 10.1016/j.crma.2010.11.017 LA - en ID - CRMATH_2011__349_1-2_93_0 ER -
%0 Journal Article %A Di Pietro, Daniele A. %T A compact cell-centered Galerkin method with subgrid stabilization %J Comptes Rendus. Mathématique %D 2011 %P 93-98 %V 349 %N 1-2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.017/ %R 10.1016/j.crma.2010.11.017 %G en %F CRMATH_2011__349_1-2_93_0
Di Pietro, Daniele A. A compact cell-centered Galerkin method with subgrid stabilization. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 93-98. doi : 10.1016/j.crma.2010.11.017. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.11.017/
[1] A compact multipoint flux approximation method with improved robustness, Numer. Methods Partial Differential Equations, Volume 24 (2008) no. 5, pp. 1329-1360 | DOI
[2] The G method for heterogeneous anisotropic diffusion on general meshes, M2AN Math. Model. Numer. Anal., Volume 44 (2010) no. 4, pp. 597-625 | DOI
[3] An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes, IJFV, Volume 7 (2010) no. 1, pp. 1-29
[4] Cell centered Galerkin methods, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 31-34 | DOI
[5] Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection, SIAM J. Numer. Anal., Volume 46 (2008) no. 2, pp. 805-831 | DOI
[6] Unstructured control-volume distributed full tensor finite volume schemes with flow based grids, Comput. Geosci., Volume 6 (2002) no. 10, pp. 433-452 | DOI
[7] Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., Volume 30 (2010) no. 4 | DOI
Cité par Sources :