Dynamical Systems
A model for the parabolic slices Per1(e2πip/q) in moduli space of quadratic rational maps
[Un modèle pour les sections paraboliques Per1(e2πip/q) de l'espace des modules des fractions rationnelles quadratiques]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1327-1330.

Voir la notice de l'article provenant de la source Numdam

The notion of relatedness loci in the parabolic slices Per1(e2πip/q) in moduli space of quadratic rational maps is introduced. They are counterparts of the disconnectedness or escape locus in the slice of quadratic polynomials. A model for these loci is presented, and a strategy of proof of the faithfulness of the model is given.

Nous introduisons la notion de lieux de parenté dans les sections paraboliques Per1(e2πip/q) de l'espace des modules des fractions rationnelles quadratiques. Ce sont des analogues du lieu de non-connexité dans la section correspondant aux polynômes quadratiques. Nous présentons un modèle pour ces lieux, et donnons une stratégie de preuve de la fidélité de ce modèle.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.033

Uhre, Eva 1, 2

1 Institut de mathématiques de Toulouse, Université Paul-Sabatier, 31062 Toulouse cedex, France
2 NSM, Roskilde University, 4000 Roskilde, Denmark
@article{CRMATH_2010__348_23-24_1327_0,
     author = {Uhre, Eva},
     title = {A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1327--1330},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.033/}
}
TY  - JOUR
AU  - Uhre, Eva
TI  - A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1327
EP  - 1330
VL  - 348
IS  - 23-24
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.033/
DO  - 10.1016/j.crma.2010.10.033
LA  - en
ID  - CRMATH_2010__348_23-24_1327_0
ER  - 
%0 Journal Article
%A Uhre, Eva
%T A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps
%J Comptes Rendus. Mathématique
%D 2010
%P 1327-1330
%V 348
%N 23-24
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.033/
%R 10.1016/j.crma.2010.10.033
%G en
%F CRMATH_2010__348_23-24_1327_0
Uhre, Eva. A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps. Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1327-1330. doi : 10.1016/j.crma.2010.10.033. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.033/

[1] Goldberg, L.R.; Keen, L. The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift, Invent. Math., Volume 101 (1990) no. 2, pp. 335-372

[2] J. Milnor, Hyperbolic components in spaces of polynomial maps, IMS Stony Brook, preprint #3(1992).

[3] Milnor, J. Geometry and dynamics of quadratic rational maps, Experiment. Math., Volume 2 (1993) no. 1, pp. 37-83

[4] Petersen, C.L. No elliptic limits for quadratic maps, Ergod. Th. & Dynam. Sys., Volume 19 (1999), pp. 127-141

[5] Petersen, C.L.; Tan, L. Analytic coordinates recording cubic dynamics (Schleicher, D., ed.), Complex Dynamics, Families and Friends, A.K. Peters, 2009, pp. 413-450

[6] Rees, M. Components of degree two hyperbolic rational maps, Invent. Math., Volume 100 (1990), pp. 357-382

[7] E. Uhre, The structure of parabolic slices Per1(e2πip/q) in moduli space of quadratic rational maps, manuscript, 2009.

[8] B. Wittner, On the bifurcation loci of rational maps of degree two, PhD thesis, Cornell University, 1988.

Cité par Sources :