Mathematical Analysis
Weighted Paley–Wiener theorem on the Hilbert transform
[Version avec poids du théorème de Paley–Wiener sur la transformée de Hilbert]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1253-1258.

Voir la notice de l'article provenant de la source Numdam

We prove weighted analogues of the Paley–Wiener theorem on integrability of the Hilbert transform of an integrable odd function which is monotone on R+. This extends Hardy–Littlewood's and Flett's results to the case p=1 under the assumption of (general) monotonicity for an even/odd function.

Nous prouvons des analogues avec poids du théorème de Paley–Wiener, à savoir l'intégrabilité de la transformée de Hilbert d'une fonction intégrable impaire décroissante sur R+. Nos résultats étendent au cas p=1 ceux de Hardy–Littlewood et de Flett concernant l'intégrabilité avec poids de la transformée de Hilbert d'une fonction paire ou impaire sous la même condition de décroissance sur R+ ou sous la condition moins restrictive de « monotonie généralisée ».

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.028

Liflyand, Elijah 1 ; Tikhonov, Sergey 2

1 Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
2 ICREA and Centre de Recerca Matemàtica (CRM), 08193 Bellaterra, Barcelona, Spain
@article{CRMATH_2010__348_23-24_1253_0,
     author = {Liflyand, Elijah and Tikhonov, Sergey},
     title = {Weighted {Paley{\textendash}Wiener} theorem on the {Hilbert} transform},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1253--1258},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.028/}
}
TY  - JOUR
AU  - Liflyand, Elijah
AU  - Tikhonov, Sergey
TI  - Weighted Paley–Wiener theorem on the Hilbert transform
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1253
EP  - 1258
VL  - 348
IS  - 23-24
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.028/
DO  - 10.1016/j.crma.2010.10.028
LA  - en
ID  - CRMATH_2010__348_23-24_1253_0
ER  - 
%0 Journal Article
%A Liflyand, Elijah
%A Tikhonov, Sergey
%T Weighted Paley–Wiener theorem on the Hilbert transform
%J Comptes Rendus. Mathématique
%D 2010
%P 1253-1258
%V 348
%N 23-24
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.028/
%R 10.1016/j.crma.2010.10.028
%G en
%F CRMATH_2010__348_23-24_1253_0
Liflyand, Elijah; Tikhonov, Sergey. Weighted Paley–Wiener theorem on the Hilbert transform. Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1253-1258. doi : 10.1016/j.crma.2010.10.028. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.028/

[1] Andersen, K. Weighted norm inequalities for Hilbert transforms and conjugate functions of even and odd functions, Proc. Amer. Math. Soc., Volume 56 (1976) no. 1, pp. 99-107

[2] Flett, T.M. Some theorems on odd and even functions, Proc. London Math. Soc. (3), Volume 8 (1958), pp. 135-148

[3] Garcia-Cuerva, J.; Rubio de Francia, J.L. Weighted Norm Inequalities and Related Topics, North-Holland, 1985

[4] Hardy, G.H.; Littlewood, J.E. Some more theorems concerning Fourier series and Fourier power series, Duke Math. J., Volume 2 (1936), pp. 354-382

[5] Hunt, R.; Muckenhoupt, B.; Wheeden, R. Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., Volume 176 (1973), pp. 227-251

[6] Kober, H. A note on Hilbert's operator, Bull. Amer. Math. Soc., Volume 48 (1942) no. 1, pp. 421-426

[7] Liflyand, E.; Tikhonov, S. The Fourier transforms of general monotone functions, Analysis and Mathematical Physics, Trends in Mathematics, Birkhäuser, 2009, pp. 373-391

[8] E. Liflyand, S. Tikhonov, A concept of general monotonicity and applications, Math. Nachrichten., in press.

[9] Paley, R.E.A.C.; Wiener, N. Notes on the theory and application of Fourier transform, Note II, Trans. Amer. Math. Soc., Volume 35 (1933), pp. 354-355

[10] Tikhonov, S. Trigonometric series with general monotone coefficients, J. Math. Anal. Appl., Volume 326 (2007), pp. 721-735

[11] Zygmund, A. Some points in the theory of trigonometric and power series, Trans. Amer. Math. Soc., Volume 36 (1934), pp. 586-617

Cité par Sources :

The research was partially supported by the MTM 2008-05561-C02-02, 2009 SGR 1303, RFFI 09-01-00175, NSH-3252.2010.1, and ESF Network Programme HCAA.