Voir la notice de l'article provenant de la source Numdam
It is shown that quasi all continuous functions on the unit circle have the property that, for many small subsets E of the circle, the partial sums of their Fourier series considered as functions restricted to E exhibit certain universality properties.
Nous démontrons pour quasi toutes les fonctions continues sur le cercle unitaire que, pour de nombreuses petites parties E du cercle, les sommes partielles de leurs séries de Fourier présentent certaines propriétés d'universalité sur E.
Müller, Jürgen 1
@article{CRMATH_2010__348_21-22_1155_0, author = {M\"uller, J\"urgen}, title = {Continuous functions with universally divergent {Fourier} series on small subsets of the circle}, journal = {Comptes Rendus. Math\'ematique}, pages = {1155--1158}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/} }
TY - JOUR AU - Müller, Jürgen TI - Continuous functions with universally divergent Fourier series on small subsets of the circle JO - Comptes Rendus. Mathématique PY - 2010 SP - 1155 EP - 1158 VL - 348 IS - 21-22 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/ DO - 10.1016/j.crma.2010.10.026 LA - en ID - CRMATH_2010__348_21-22_1155_0 ER -
%0 Journal Article %A Müller, Jürgen %T Continuous functions with universally divergent Fourier series on small subsets of the circle %J Comptes Rendus. Mathématique %D 2010 %P 1155-1158 %V 348 %N 21-22 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/ %R 10.1016/j.crma.2010.10.026 %G en %F CRMATH_2010__348_21-22_1155_0
Müller, Jürgen. Continuous functions with universally divergent Fourier series on small subsets of the circle. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1155-1158. doi : 10.1016/j.crma.2010.10.026. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/
[1] Universal functions and hypercyclic vectors, Bull. Amer. Math. Soc., Volume 36 (1999), pp. 345-381
[2] Baire's category theorem and trigonometric series, J. Anal. Math., Volume 80 (2000), pp. 143-182
[3] An Introduction to Harmonic Analysis, Cambridge University Press, 2004
[4] Kahane's Helson curve, Orsay, 1993 (J. Fourier Anal. Appl.) (1995), pp. 325-346 (Special Issue)
[5] Universal Taylor series, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 1293-1306
Cité par Sources :