Mathematical Analysis
Continuous functions with universally divergent Fourier series on small subsets of the circle
[Fonctions continues avec des séries de Fourier universellement divergentes sur des petites parties du cercle]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1155-1158.

Voir la notice de l'article provenant de la source Numdam

It is shown that quasi all continuous functions on the unit circle have the property that, for many small subsets E of the circle, the partial sums of their Fourier series considered as functions restricted to E exhibit certain universality properties.

Nous démontrons pour quasi toutes les fonctions continues sur le cercle unitaire que, pour de nombreuses petites parties E du cercle, les sommes partielles de leurs séries de Fourier présentent certaines propriétés d'universalité sur E.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.026

Müller, Jürgen 1

1 Universität Trier, FB IV, Mathematik, 54286 Trier, Germany
@article{CRMATH_2010__348_21-22_1155_0,
     author = {M\"uller, J\"urgen},
     title = {Continuous functions with universally divergent {Fourier} series on small subsets of the circle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1155--1158},
     publisher = {Elsevier},
     volume = {348},
     number = {21-22},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/}
}
TY  - JOUR
AU  - Müller, Jürgen
TI  - Continuous functions with universally divergent Fourier series on small subsets of the circle
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1155
EP  - 1158
VL  - 348
IS  - 21-22
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/
DO  - 10.1016/j.crma.2010.10.026
LA  - en
ID  - CRMATH_2010__348_21-22_1155_0
ER  - 
%0 Journal Article
%A Müller, Jürgen
%T Continuous functions with universally divergent Fourier series on small subsets of the circle
%J Comptes Rendus. Mathématique
%D 2010
%P 1155-1158
%V 348
%N 21-22
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/
%R 10.1016/j.crma.2010.10.026
%G en
%F CRMATH_2010__348_21-22_1155_0
Müller, Jürgen. Continuous functions with universally divergent Fourier series on small subsets of the circle. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1155-1158. doi : 10.1016/j.crma.2010.10.026. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.026/

[1] Grosse-Erdmann, K.G. Universal functions and hypercyclic vectors, Bull. Amer. Math. Soc., Volume 36 (1999), pp. 345-381

[2] Kahane, J.P. Baire's category theorem and trigonometric series, J. Anal. Math., Volume 80 (2000), pp. 143-182

[3] Katznelson, Y. An Introduction to Harmonic Analysis, Cambridge University Press, 2004

[4] Körner, T.W. Kahane's Helson curve, Orsay, 1993 (J. Fourier Anal. Appl.) (1995), pp. 325-346 (Special Issue)

[5] Nestoridis, V. Universal Taylor series, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 1293-1306

Cité par Sources :