Voir la notice de l'article provenant de la source Numdam
We show that the main theorem of Morales, Ramis and Simo (2007) [6] about Galoisian obstructions to meromorphic integrability of Hamiltonian systems can be naturally extended to the non-Hamiltonian case. Namely, if a dynamical system is meromorphically integrable in the non-Hamiltonian sense, then the differential Galois groups of the variational equations (of any order) along its solutions must be virtually Abelian.
Nous montrons la version non-hamiltonienne du théorème de Morales, Ramis et Simo (2007) [6]. Plus précisément, si un système dynamique est méromorphiquement intégrable au sens non-hamiltonien, alors tous les groupes de Galois différentiels des équations variationelles d'ordre arbitraire le long de ses solutions doivent être virtuellement abéliens.
Ayoul, Michaël 1 ; Zung, Nguyen Tien 1
@article{CRMATH_2010__348_23-24_1323_0, author = {Ayoul, Micha\"el and Zung, Nguyen Tien}, title = {Galoisian obstructions to {non-Hamiltonian} integrability}, journal = {Comptes Rendus. Math\'ematique}, pages = {1323--1326}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.10.024}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.024/} }
TY - JOUR AU - Ayoul, Michaël AU - Zung, Nguyen Tien TI - Galoisian obstructions to non-Hamiltonian integrability JO - Comptes Rendus. Mathématique PY - 2010 SP - 1323 EP - 1326 VL - 348 IS - 23-24 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.024/ DO - 10.1016/j.crma.2010.10.024 LA - en ID - CRMATH_2010__348_23-24_1323_0 ER -
%0 Journal Article %A Ayoul, Michaël %A Zung, Nguyen Tien %T Galoisian obstructions to non-Hamiltonian integrability %J Comptes Rendus. Mathématique %D 2010 %P 1323-1326 %V 348 %N 23-24 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.024/ %R 10.1016/j.crma.2010.10.024 %G en %F CRMATH_2010__348_23-24_1323_0
Ayoul, Michaël; Zung, Nguyen Tien. Galoisian obstructions to non-Hamiltonian integrability. Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1323-1326. doi : 10.1016/j.crma.2010.10.024. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.024/
[1] What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., Volume 44 (1999) no. 1–2, pp. 29-35
[2] Extended integrability and bi-hamiltonian systems, Comm. Math. Phys., Volume 196 (1998) no. 1, pp. 19-51
[3] Differential Galois obstructions for non-commutative integrability, Phys. Lett. A, Volume 372 (2008) no. 33, pp. 5431-5435
[4] Necessary conditions for super-integrability of Hamiltonian systems, Phys. Lett. A, Volume 372 (2008) no. 34, pp. 5581-5587
[5] Galoisian obstructions to integrability of Hamiltonian systems, I and II, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 33-111
[6] Integrability of Hamiltonian systems and differential Galois groups of higher order variational equations, Ann. Sci. Ec. Norm. Super., Volume 40 (2007) no. 6, pp. 845-884
[7] Singular complete integrability, Publ. Math. Inst. Hautes Etudes Sci., Volume 91 (2000), pp. 134-210
[8] Convergence versus integrability in Poincaré–Dulac normal forms, Math. Res. Lett. (2002)
[9] Torus actions and integrable systems (Bolsinov, A.V.; Fomenko, A.T.; Oshemkov, A.A., eds.), Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., 2006, pp. 289-328 | arXiv
Cité par Sources :