Algebra/Algebraic Geometry
Isotropy of symplectic involutions
[Isotropie d'involutions symplectiques]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1151-1153.

Voir la notice de l'article provenant de la source Numdam

We prove the symplectic analogue of the isotropy theorem for orthogonal involutions. We apply (a modification of) a method due to J.-P. Tignol originally applied to prove the symplectic analogue of the hyperbolicity theorem for orthogonal involutions.

Nous démontrons l'analogue symplectique du théorème d'isotropie des involutions orthogonales. Nous utilisons (une modification de) la méthode due à J.-P. Tignol initialement utilisée pour démontrer l'analogue symplectique du théorème d'hyperbolicité des involutions orthogonales.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.005

Karpenko, Nikita A. 1

1 UPMC Univ. Paris 06, Institut de Mathématiques de Jussieu, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2010__348_21-22_1151_0,
     author = {Karpenko, Nikita A.},
     title = {Isotropy of symplectic involutions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1151--1153},
     publisher = {Elsevier},
     volume = {348},
     number = {21-22},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.005/}
}
TY  - JOUR
AU  - Karpenko, Nikita A.
TI  - Isotropy of symplectic involutions
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1151
EP  - 1153
VL  - 348
IS  - 21-22
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.005/
DO  - 10.1016/j.crma.2010.10.005
LA  - en
ID  - CRMATH_2010__348_21-22_1151_0
ER  - 
%0 Journal Article
%A Karpenko, Nikita A.
%T Isotropy of symplectic involutions
%J Comptes Rendus. Mathématique
%D 2010
%P 1151-1153
%V 348
%N 21-22
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.005/
%R 10.1016/j.crma.2010.10.005
%G en
%F CRMATH_2010__348_21-22_1151_0
Karpenko, Nikita A. Isotropy of symplectic involutions. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1151-1153. doi : 10.1016/j.crma.2010.10.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.005/

[1] Cohen, I.S. On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., Volume 59 (1946), pp. 54-106

[2] Elman, R.; Karpenko, N.; Merkurjev, A. The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008

[3] Fesenko, I.B.; Vostokov, S.V. Local Fields and Their Extensions, Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 2002 (With a foreword by I.R. Shafarevich)

[4] Karpenko, N.A. Hyperbolicity of orthogonal involutions, Doc. Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010), pp. 371-389 (electronic)

[5] Karpenko, N.A. Isotropy of orthogonal involutions, 31 Jan. 2010 (11 p) | arXiv

[6] Karpenko, N.; Merkurjev, A. Essential dimension of quadrics, Invent. Math., Volume 153 (2003) no. 2, pp. 361-372

[7] Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P. The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998 (with a preface in French by J. Tits)

[8] Tignol, J.-P. Hyperbolicity of symplectic and unitary involutions. Appendix to a paper of N. Karpenko, Doc. Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010), pp. 389-392 (electronic)

Cité par Sources :