Voir la notice de l'article provenant de la source Numdam
We prove the symplectic analogue of the isotropy theorem for orthogonal involutions. We apply (a modification of) a method due to J.-P. Tignol originally applied to prove the symplectic analogue of the hyperbolicity theorem for orthogonal involutions.
Nous démontrons l'analogue symplectique du théorème d'isotropie des involutions orthogonales. Nous utilisons (une modification de) la méthode due à J.-P. Tignol initialement utilisée pour démontrer l'analogue symplectique du théorème d'hyperbolicité des involutions orthogonales.
Karpenko, Nikita A. 1
@article{CRMATH_2010__348_21-22_1151_0, author = {Karpenko, Nikita A.}, title = {Isotropy of symplectic involutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1151--1153}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.005}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.005/} }
TY - JOUR AU - Karpenko, Nikita A. TI - Isotropy of symplectic involutions JO - Comptes Rendus. Mathématique PY - 2010 SP - 1151 EP - 1153 VL - 348 IS - 21-22 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.005/ DO - 10.1016/j.crma.2010.10.005 LA - en ID - CRMATH_2010__348_21-22_1151_0 ER -
Karpenko, Nikita A. Isotropy of symplectic involutions. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1151-1153. doi : 10.1016/j.crma.2010.10.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.10.005/
[1] On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., Volume 59 (1946), pp. 54-106
[2] The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008
[3] Local Fields and Their Extensions, Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 2002 (With a foreword by I.R. Shafarevich)
[4] Hyperbolicity of orthogonal involutions, Doc. Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010), pp. 371-389 (electronic)
[5] Isotropy of orthogonal involutions, 31 Jan. 2010 (11 p) | arXiv
[6] Essential dimension of quadrics, Invent. Math., Volume 153 (2003) no. 2, pp. 361-372
[7] The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998 (with a preface in French by J. Tits)
[8] Hyperbolicity of symplectic and unitary involutions. Appendix to a paper of N. Karpenko, Doc. Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010), pp. 389-392 (electronic)
Cité par Sources :