Partial Differential Equations
Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity
[Existence d'ondes solitaires pour le système couplé de Schrödinger–KdV avec non linearité cubique]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 19-20, pp. 1079-1082.

Voir la notice de l'article provenant de la source Numdam

We prove in this Note the existence of an infinite family of smooth positive bound states for the coupled Schrödinger–Korteweg–de Vries system, which decays exponentially at infinity.

Nous prouvons dans cette Note l'existence d'une famille infinie d'ondes solitaires régulières pour le système couplé de Schrödinger–Korteweg–de Vries, qui décroissent exponentiellement a l'infini.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.018

Dias, João-Paulo 1 ; Figueira, Mário 1 ; Oliveira, Filipe 2

1 CMAF/UL and FCUL, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
2 Dep. Matemática, FCT/UNL, Monte da Caparica, Portugal
@article{CRMATH_2010__348_19-20_1079_0,
     author = {Dias, Jo\~ao-Paulo and Figueira, M\'ario and Oliveira, Filipe},
     title = {Existence of bound states for the coupled {Schr\"odinger{\textendash}KdV} system with cubic nonlinearity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1079--1082},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     year = {2010},
     doi = {10.1016/j.crma.2010.09.018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/}
}
TY  - JOUR
AU  - Dias, João-Paulo
AU  - Figueira, Mário
AU  - Oliveira, Filipe
TI  - Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1079
EP  - 1082
VL  - 348
IS  - 19-20
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/
DO  - 10.1016/j.crma.2010.09.018
LA  - en
ID  - CRMATH_2010__348_19-20_1079_0
ER  - 
%0 Journal Article
%A Dias, João-Paulo
%A Figueira, Mário
%A Oliveira, Filipe
%T Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity
%J Comptes Rendus. Mathématique
%D 2010
%P 1079-1082
%V 348
%N 19-20
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/
%R 10.1016/j.crma.2010.09.018
%G en
%F CRMATH_2010__348_19-20_1079_0
Dias, João-Paulo; Figueira, Mário; Oliveira, Filipe. Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity. Comptes Rendus. Mathématique, Tome 348 (2010) no. 19-20, pp. 1079-1082. doi : 10.1016/j.crma.2010.09.018. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/

[1] Albert, J.; Angulo Pava, J. Existence and stability of ground-state solutions of a Schrödinger–KdV system, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003), pp. 987-1029

[2] Ambrosetti, A.; Colorado, E. Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 453-458

[3] Angulo Pava, J.; Montenegro, J.F. Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves, Nonlinearity, Volume 13 (2000), pp. 1595-1611

[4] Cazenave, T. An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 22, Instituto de Matemática, UFRJ, Rio de Janeiro, 1989

[5] Corcho, A.J.; Linares, F. Well-posedness for the Schrödinger–Korteweg–de Vries system, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 4089-4106

[6] Lions, P.L. The concentration-compactness principle in the calculus of variations, Part 1, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 109-145

[7] Lions, P.L. The concentration-compactness principle in the calculus of variations, Part 2, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 223-283

[8] Ohta, M. Stability of stationary states for the coupled Klein–Gordon–Schrödinger equations, Nonlinear Anal. TMA, Volume 27 (1996), pp. 455-461

Cité par Sources :