Voir la notice de l'article provenant de la source Numdam
We prove in this Note the existence of an infinite family of smooth positive bound states for the coupled Schrödinger–Korteweg–de Vries system, which decays exponentially at infinity.
Nous prouvons dans cette Note l'existence d'une famille infinie d'ondes solitaires régulières pour le système couplé de Schrödinger–Korteweg–de Vries, qui décroissent exponentiellement a l'infini.
Dias, João-Paulo 1 ; Figueira, Mário 1 ; Oliveira, Filipe 2
@article{CRMATH_2010__348_19-20_1079_0, author = {Dias, Jo\~ao-Paulo and Figueira, M\'ario and Oliveira, Filipe}, title = {Existence of bound states for the coupled {Schr\"odinger{\textendash}KdV} system with cubic nonlinearity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1079--1082}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.018}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/} }
TY - JOUR AU - Dias, João-Paulo AU - Figueira, Mário AU - Oliveira, Filipe TI - Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity JO - Comptes Rendus. Mathématique PY - 2010 SP - 1079 EP - 1082 VL - 348 IS - 19-20 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/ DO - 10.1016/j.crma.2010.09.018 LA - en ID - CRMATH_2010__348_19-20_1079_0 ER -
%0 Journal Article %A Dias, João-Paulo %A Figueira, Mário %A Oliveira, Filipe %T Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity %J Comptes Rendus. Mathématique %D 2010 %P 1079-1082 %V 348 %N 19-20 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/ %R 10.1016/j.crma.2010.09.018 %G en %F CRMATH_2010__348_19-20_1079_0
Dias, João-Paulo; Figueira, Mário; Oliveira, Filipe. Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity. Comptes Rendus. Mathématique, Tome 348 (2010) no. 19-20, pp. 1079-1082. doi : 10.1016/j.crma.2010.09.018. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.018/
[1] Existence and stability of ground-state solutions of a Schrödinger–KdV system, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003), pp. 987-1029
[2] Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 453-458
[3] Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves, Nonlinearity, Volume 13 (2000), pp. 1595-1611
[4] An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 22, Instituto de Matemática, UFRJ, Rio de Janeiro, 1989
[5] Well-posedness for the Schrödinger–Korteweg–de Vries system, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 4089-4106
[6] The concentration-compactness principle in the calculus of variations, Part 1, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 109-145
[7] The concentration-compactness principle in the calculus of variations, Part 2, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 223-283
[8] Stability of stationary states for the coupled Klein–Gordon–Schrödinger equations, Nonlinear Anal. TMA, Volume 27 (1996), pp. 455-461
Cité par Sources :