Voir la notice de l'article provenant de la source Numdam
In this Note we consider the equivalence of different properties of the restriction of an irreducible unitary representation of a real reductive group to a closed reductive subgroup. As a corollary, we prove a weak form of a conjecture of Kobayashi.
Dans cette Note, nous considérons l'équivalence de différentes propriétés de la restriction d'une représentation unitaire irréductible d'un groupe de Lie réel réductif á un sous-groupe réductif fermé. Comme corollaire, nous prouvons une forme faible d'une conjecture de Kobayashi.
Zhu, Fuhai 1 ; Liang, Ke 1
@article{CRMATH_2010__348_17-18_959_0, author = {Zhu, Fuhai and Liang, Ke}, title = {On a branching law of unitary representations and a conjecture of {Kobayashi}}, journal = {Comptes Rendus. Math\'ematique}, pages = {959--962}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.09.006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.006/} }
TY - JOUR AU - Zhu, Fuhai AU - Liang, Ke TI - On a branching law of unitary representations and a conjecture of Kobayashi JO - Comptes Rendus. Mathématique PY - 2010 SP - 959 EP - 962 VL - 348 IS - 17-18 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.006/ DO - 10.1016/j.crma.2010.09.006 LA - en ID - CRMATH_2010__348_17-18_959_0 ER -
%0 Journal Article %A Zhu, Fuhai %A Liang, Ke %T On a branching law of unitary representations and a conjecture of Kobayashi %J Comptes Rendus. Mathématique %D 2010 %P 959-962 %V 348 %N 17-18 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.006/ %R 10.1016/j.crma.2010.09.006 %G en %F CRMATH_2010__348_17-18_959_0
Zhu, Fuhai; Liang, Ke. On a branching law of unitary representations and a conjecture of Kobayashi. Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 959-962. doi : 10.1016/j.crma.2010.09.006. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.09.006/
[1] M. Duflo, J. Vargas, Proper maps and multiplicities, preprint.
[2] The restriction of to reductive subgroups, Proc. Japan Acad., Volume 69 (1993), pp. 262-267
[3] Discrete decomposability of the restriction of with respect to reductive subgroups and its applications, Invent. Math., Volume 117 (1994), pp. 181-205
[4] Discrete decomposability of the restriction of , Part III: Restriction of Harish–Chandra modules and associated varieties, Invent. Math., Volume 131 (1998), pp. 229-256
[5] Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal., Volume 152 (1998), pp. 100-135
[6] Discrete decomposable restrictions of unitary representations of reductive Lie groups–examples and conjectures, Okayama–Kyoto, 1997 (Adv. Stud. Pure Math.), Volume vol. 26, Math. Soc. Japan, Tokyo (2000), pp. 99-127
[7] Branching problems of unitary representations, Proceedings of the International Congress of Mathematicians, vol. II, Higher Ed. Press, Beijing, 2002, pp. 615-627
[8] Restrictions of unitary representations of real reductive groups, Lie Theory: Unitary Representations and Compactifications of Symmetric Spaces, Progr. Math., vol. 29, Birkhäuser Boston, Boston, MA, 2005, pp. 139-207
[9] On the tensor product of a finite and an infinite dimensional representation, J. Funct. Anal., Volume 20 (1975), pp. 257-285
Cité par Sources :