Probability Theory
On Cramér's theorem for capacities
[Sur théorème de Cramér pour capacités]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 1009-1013.

Voir la notice de l'article provenant de la source Numdam

In this Note, our aim is to obtain Cramér's upper bound for capacities induced by sublinear expectations.

Dans cette Note, notre objet est d'obtenir la borne supérieure de Cramér pour les capacités induites par des espérances sous-linéaires.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.033

Hu, Feng 1

1 School of Mathematics, Shandong University, 250100 Jinan, China
@article{CRMATH_2010__348_17-18_1009_0,
     author = {Hu, Feng},
     title = {On {Cram\'er's} theorem for capacities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1009--1013},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.033/}
}
TY  - JOUR
AU  - Hu, Feng
TI  - On Cramér's theorem for capacities
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1009
EP  - 1013
VL  - 348
IS  - 17-18
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.033/
DO  - 10.1016/j.crma.2010.07.033
LA  - en
ID  - CRMATH_2010__348_17-18_1009_0
ER  - 
%0 Journal Article
%A Hu, Feng
%T On Cramér's theorem for capacities
%J Comptes Rendus. Mathématique
%D 2010
%P 1009-1013
%V 348
%N 17-18
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.033/
%R 10.1016/j.crma.2010.07.033
%G en
%F CRMATH_2010__348_17-18_1009_0
Hu, Feng. On Cramér's theorem for capacities. Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 1009-1013. doi : 10.1016/j.crma.2010.07.033. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.033/

[1] Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent measures of risk, Mathematical Finance, Volume 9 (1999) no. 3, pp. 203-228

[2] Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications, Springer-Verlag, New York–Berlin–Heidelberg, 1998

[3] Föllmer, H.; Schied, A. Convex measures of risk and trading constraints, Finance and Stochastics, Volume 6 (2002) no. 4, pp. 429-447

[4] Frittelli, M.; Rossaza Gianin, E. Dynamic convex risk measures (Szegö, G., ed.), New Risk Measures for the 21st Century, John Wiley & Sons, 2004, pp. 227-248

[5] Peng, S. G-Brownian motion and dynamic risk measure under volatility uncertainty, 19 Nov 2007 | arXiv

[6] Peng, S. A new central limit theorem under sublinear expectations, 18 Mar 2008 | arXiv

[7] Peng, S. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52 (2009) no. 7, pp. 1391-1411

Cité par Sources :

This work has been supported by the National Basic Program of China (973 Program) (No. 2007CB814901) and the National Natural Science Foundation of China (No. 10771119).