Voir la notice de l'article provenant de la source Numdam
In this Note, our aim is to obtain the central limit theorem for capacities induced by sublinear expectations.
Le but de cette Note est d'établir un théorème central limite pour les capacités associées à une espérance sous-linéaire.
Hu, Feng 1 ; Zhang, Defei 1, 2
@article{CRMATH_2010__348_19-20_1111_0, author = {Hu, Feng and Zhang, Defei}, title = {Central limit theorem for capacities}, journal = {Comptes Rendus. Math\'ematique}, pages = {1111--1114}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.07.026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.026/} }
TY - JOUR AU - Hu, Feng AU - Zhang, Defei TI - Central limit theorem for capacities JO - Comptes Rendus. Mathématique PY - 2010 SP - 1111 EP - 1114 VL - 348 IS - 19-20 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.026/ DO - 10.1016/j.crma.2010.07.026 LA - en ID - CRMATH_2010__348_19-20_1111_0 ER -
%0 Journal Article %A Hu, Feng %A Zhang, Defei %T Central limit theorem for capacities %J Comptes Rendus. Mathématique %D 2010 %P 1111-1114 %V 348 %N 19-20 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.026/ %R 10.1016/j.crma.2010.07.026 %G en %F CRMATH_2010__348_19-20_1111_0
Hu, Feng; Zhang, Defei. Central limit theorem for capacities. Comptes Rendus. Mathématique, Tome 348 (2010) no. 19-20, pp. 1111-1114. doi : 10.1016/j.crma.2010.07.026. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.026/
[1] Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal. (2010) | DOI
[2] G-expectation, G-Brownian motion and related stochastic calculus of Ito type (Benth, F.E. et al., eds.), Stochastic Analysis and Applications, Proceedings of the Second Abel Symposium, 2005, Springer-Verlag, 2006, pp. 541-567
[3] Law of large numbers and central limit theorem under nonlinear expectations, 13 Feb 2007 | arXiv
[4] G-Brownian motion and dynamic risk measure under volatility uncertainty, 19 Nov 2007 | arXiv
[5] Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl., Volume 118 (2008) no. 12, pp. 2223-2253
[6] A new central limit theorem under sublinear expectations, 18 Mar 2008 | arXiv
[7] Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A: Mathematics, Volume 52 (2009) no. 7, pp. 1391-1411
Cité par Sources :