Voir la notice de l'article provenant de la source Numdam
The aim of this Note is to present global boundedness results for Fourier integral operators in . The main question is what are the decay conditions on the amplitudes for the operators to be bounded on . Results under different sets of assumptions on phase functions and amplitudes are presented.
Dans cette Note nous présentons des estimations globales pour les opérateurs intégraux de Fourier dans les espaces . Les questions d'intérêt sont les conditions des décroissance pour les amplitudes. Les résultats sont présentés sous des conditions différentes sur la fonction de phase et l'amplitude.
Coriasco, Sandro 1 ; Ruzhansky, Michael 2
@article{CRMATH_2010__348_15-16_847_0, author = {Coriasco, Sandro and Ruzhansky, Michael}, title = {On the boundedness of {Fourier} integral operators on $ {L}^{p}({\mathbb{R}}^{n})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {847--851}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.025}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.025/} }
TY - JOUR AU - Coriasco, Sandro AU - Ruzhansky, Michael TI - On the boundedness of Fourier integral operators on $ {L}^{p}({\mathbb{R}}^{n})$ JO - Comptes Rendus. Mathématique PY - 2010 SP - 847 EP - 851 VL - 348 IS - 15-16 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.025/ DO - 10.1016/j.crma.2010.07.025 LA - en ID - CRMATH_2010__348_15-16_847_0 ER -
%0 Journal Article %A Coriasco, Sandro %A Ruzhansky, Michael %T On the boundedness of Fourier integral operators on $ {L}^{p}({\mathbb{R}}^{n})$ %J Comptes Rendus. Mathématique %D 2010 %P 847-851 %V 348 %N 15-16 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.025/ %R 10.1016/j.crma.2010.07.025 %G en %F CRMATH_2010__348_15-16_847_0
Coriasco, Sandro; Ruzhansky, Michael. On the boundedness of Fourier integral operators on $ {L}^{p}({\mathbb{R}}^{n})$. Comptes Rendus. Mathématique, Tome 348 (2010) no. 15-16, pp. 847-851. doi : 10.1016/j.crma.2010.07.025. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.07.025/
[1] On some oscillatory integral transformations in , Japan. J. Math. (N.S.), Volume 4 (1978), pp. 299-361
[2] boundedness of Fourier integrals, Mem. Amer. Math. Soc., Volume 264 (1982)
[3] Estimations precisees pour des intégrales oscillantes, Comm. Partial Differential Equations, Volume 22 (1997), pp. 165-184
[4] On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, Volume 23 (1971), pp. 374-378
[5] On the -boundedness of pseudo-differential operators, Proc. Amer. Math. Soc., Volume 61 (1976), pp. 252-254
[6] Au-delà des opérateurs pseudo-différentiels, Astérisque, Volume 57 (1978)
[7] Boundedness of Fourier integral operators on spaces, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 6049-6071
[8] On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal., Volume 18 (1975), pp. 115-131
[9] Fourier integral operators in SG classes I: composition theorems and action on SG Sobolev spaces, Rend. Sem. Mat. Univ. Pol. Torino, Volume 57 (1999), pp. 249-302
[10] Degenerate elliptic pseudo-differential operators of principal type, Math. USSR Sbornik, Volume 11 (1970), pp. 539-585
[11] Fourier integral operators. I, Acta Math., Volume 127 (1971), pp. 79-183
[12] A calculus of Fourier integral operators on and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations, Volume 1 (1976), pp. 1-44
[13] On some estimates for the wave operator in and , J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980), pp. 331-354
[14] estimates for the wave equation, J. Funct. Anal., Volume 36 (1980), pp. 114-145
[15] Singularities of affine fibrations in the regularity theory of Fourier integral operators, Russian Math. Surveys, Volume 55 (2000), pp. 99-170
[16] Regularity Theory of Fourier Integral Operators with Complex Phases and Singularities of Affine Fibrations, CWI Tract, vol. 131, Math. Centrum, CWI, Amsterdam, 2001
[17] Global boundedness theorems for a class of Fourier integral operators, Comm. Partial Differential Equations, Volume 31 (2006), pp. 547-569
[18] A smoothing property of Schrödinger equations in the critical case, Math. Ann., Volume 335 (2006), pp. 645-673
[19] Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations, Oper. Theory Adv. Appl., Volume 164 (2006), pp. 65-78
[20] Weighted Sobolev estimates for a class of Fourier integral operators (Math. Nachr., in press) | arXiv
[21] Regularity properties of Fourier integral operators, Ann. of Math., Volume 134 (1991), pp. 231-251
[22] -boundedness of pseudo-differential operators satisfying Besov estimates I, J. Math. Soc. Japan, Volume 40 (1988), pp. 105-122
[23] The weak-type of Fourier integral operators of order , J. Aust. Math. Soc., Volume 76 (2004), pp. 1-21
Cité par Sources :