Voir la notice de l'article provenant de la source Numdam
Relying on recent results on Harnack inequalities for equations of p-Laplacian type, we prove Liouville-type estimates for solutions to these equations, both in the degenerate (), and in the singular () range.
En utilisant des résultats récents sur l'inégalité de Harnack pour les équations type p-laplacien, on établit des théorèmes de type Liouville pour les solutions de ces équations, dans le cas dégénéré , ainsi bien que dans le cas singulier .
DiBenedetto, Emmanuele 1 ; Gianazza, Ugo 2 ; Vespri, Vincenzo 3
@article{CRMATH_2010__348_15-16_873_0, author = {DiBenedetto, Emmanuele and Gianazza, Ugo and Vespri, Vincenzo}, title = {Liouville-type theorems for certain degenerate and singular parabolic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {873--877}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.06.019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.06.019/} }
TY - JOUR AU - DiBenedetto, Emmanuele AU - Gianazza, Ugo AU - Vespri, Vincenzo TI - Liouville-type theorems for certain degenerate and singular parabolic equations JO - Comptes Rendus. Mathématique PY - 2010 SP - 873 EP - 877 VL - 348 IS - 15-16 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.06.019/ DO - 10.1016/j.crma.2010.06.019 LA - en ID - CRMATH_2010__348_15-16_873_0 ER -
%0 Journal Article %A DiBenedetto, Emmanuele %A Gianazza, Ugo %A Vespri, Vincenzo %T Liouville-type theorems for certain degenerate and singular parabolic equations %J Comptes Rendus. Mathématique %D 2010 %P 873-877 %V 348 %N 15-16 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.06.019/ %R 10.1016/j.crma.2010.06.019 %G en %F CRMATH_2010__348_15-16_873_0
DiBenedetto, Emmanuele; Gianazza, Ugo; Vespri, Vincenzo. Liouville-type theorems for certain degenerate and singular parabolic equations. Comptes Rendus. Mathématique, Tome 348 (2010) no. 15-16, pp. 873-877. doi : 10.1016/j.crma.2010.06.019. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.06.019/
[1] Harnack estimates for quasi-linear degenerate parabolic differential equation, Acta Math., Volume 200 (2008), pp. 181-209
[2] Alternative forms of the Harnack inequality for non-negative solutions to certain degenerate and singular parabolic equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. (9) Rend. Lincei Mat. Appl., Volume 20 (2009), pp. 369-377
[3] Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume IX (2010), pp. 385-422
[4] Liouville theorems for the solution of second order linear parabolic equations with discontinuous coefficients, Math. Zametki, Volume 5 (1969), pp. 599-606
[5] Phragmén–Lindelöf type theorems and Liouville theorems for a linear parabolic equation, Math. Zametki, Volume 37 (1985), pp. 119-124
[6] Liouville theorems in halfspaces for parabolic hypoelliptic equations, Ric. Mat., Volume 55 (2006), pp. 267-282
[7] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., Volume 17 (1964), pp. 101-134
Cité par Sources :