Mathematical Analysis/Calculus of Variations
On optimality of c-cyclically monotone transference plans
[Sur l'optimalité des plans de transport c-cycliques monotones]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 11-12, pp. 613-618.

Voir la notice de l'article provenant de la source Numdam

This Note deals with the equivalence between the optimality of a transport plan for the Monge–Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in Bianchini and Caravenna (2009) [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems among the family of transport plans.

Dans la présente note nous décrivons brièvement la construction introduite dans Bianchini and Caravenna (2009) [7] à propos de l'équivalence entre l'optimalité d'un plan de transport pour le problème de Monge–Kantorovich et la condition de monotonie c-cyclique—ainsi que d'autres sujets que cela nous amène à aborder. Nous souhaitons mettre en évidence l'hypothèse de mesurabilité sur la structure sous-jacente de pré-ordre linéaire.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.03.022

Bianchini, Stefano 1 ; Caravenna, Laura 2

1 SISSA, via Beirut 2, 34014 Trieste, Italy
2 CRM De Giorgi, Collegio Puteano, Scuola Normale Superiore, Piazza dei Cavalieri 3, 56100 Pisa, Italy
@article{CRMATH_2010__348_11-12_613_0,
     author = {Bianchini, Stefano and Caravenna, Laura},
     title = {On optimality of \protect\emph{c}-cyclically monotone transference plans},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {613--618},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.022/}
}
TY  - JOUR
AU  - Bianchini, Stefano
AU  - Caravenna, Laura
TI  - On optimality of c-cyclically monotone transference plans
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 613
EP  - 618
VL  - 348
IS  - 11-12
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.022/
DO  - 10.1016/j.crma.2010.03.022
LA  - en
ID  - CRMATH_2010__348_11-12_613_0
ER  - 
%0 Journal Article
%A Bianchini, Stefano
%A Caravenna, Laura
%T On optimality of c-cyclically monotone transference plans
%J Comptes Rendus. Mathématique
%D 2010
%P 613-618
%V 348
%N 11-12
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.022/
%R 10.1016/j.crma.2010.03.022
%G en
%F CRMATH_2010__348_11-12_613_0
Bianchini, Stefano; Caravenna, Laura. On optimality of c-cyclically monotone transference plans. Comptes Rendus. Mathématique, Tome 348 (2010) no. 11-12, pp. 613-618. doi : 10.1016/j.crma.2010.03.022. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.022/

[1] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000

[2] Ambrosio, L.; Pratelli, A. Existence and Stability Results in the L1 Theory of Optimal Transportation, Optimal Transportation and Applications, Lecture Notes in Mathematics, vol. 1813, Springer, Berlin, 2001

[3] Beiglböck, M.; Goldstern, M.; Maresch, G.; Schachermayer, W. Optimal and better transport plans, J. Funct. Anal., Volume 256 (2009) no. 6, pp. 1907-1927

[4] M. Beiglböck, C. Leonard, W. Schachermayer, A general duality theorem for the Monge–Kantorovich transport problem

[5] M. Beiglböck, C. Leonard, W. Schachermayer, On the duality theory for the Monge–Kantorovich transport problem

[6] M. Beiglböck, W. Schachermayer, Duality for Borel measurable cost function, preprint

[7] Bianchini, S.; Caravenna, L. On the extremality, uniqueness and optimality of transference plans, Bull. Inst. Math. Acad. Sin. (N.S.), Volume 4 (2009) no. 4, pp. 353-455

[8] Fremlin, D.H. Measure Theory, vol. 1–4, Torres Fremlin, Colchester, 2001

[9] Harrington, L.; Marker, D.; Shelah, S. Borel orderings, Trans. Amer. Math. Soc., Volume 310 (1988) no. 1, pp. 293-302

[10] Hestir, K.; Williams, S.C. Supports of doubly stochastic measures, Bernoulli, Volume 1 (1995) no. 3, pp. 217-243

[11] Kanovei, V. When a partial Borel order is linearizable, Fund. Math., Volume 155 (1998) no. 3, pp. 301-309

[12] Kellerer, H.G. Duality theorems for marginals problems, Z. Wahrsch. Verw. Gebiete, Volume 67 (1984) no. 4, pp. 399-432

[13] Pratelli, A. On the sufficiency of c-cyclical monotonicity for optimality of transport plans, Math. Z. (2007)

[14] W. Schachermayer, J. Teichmann, Solution of a problem in Villani's book, preprint, 2005

[15] Schachermayer, W.; Teichmann, J. Characterization of optimal transport plans for the Monge–Kantorovich problem, Proc. Amer. Math. Soc., Volume 137 (2009) no. 2, pp. 519-529

[16] Smith, C.; Knott, M. On Hoeffding–Fréchet bounds and cyclic monotone relations, J. Multivariate Anal., Volume 40 (1992) no. 2, pp. 328-334

[17] Villani, C. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, AMS, Providence, RI, 2003

Cité par Sources :