Ordinary Differential Equations
A theorem of uniqueness for an inviscid dyadic model
[Un théorème d'unicité pour un modèle dyadique non visqueux]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 9-10, pp. 525-528.

Voir la notice de l'article provenant de la source Numdam

We consider the solutions of the Cauchy problem for a dyadic model of Euler equations. We prove global existence and uniqueness of Leray–Hopf solutions in a rather large class K that implies in particular global existence and uniqueness in l2 for all initial positive conditions in l2.

Nous considérons les solutions du problème de Cauchy pour un modèle dyadique d'équations d'Euler. Nous démontrons l'existence et l'unicité globales des solutions de Leray–Hopf dans une classe K assez large, ce qui implique en particulier l'existence et l'unicité dans l2 pour toute condition initiale positive dans l2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.03.007

Barbato, D. 1 ; Flandoli, Franco 2 ; Morandin, Francesco 3

1 Dipartimento di Matematica Pura e Applicata, Università di Padova, via Trieste, 63, 35121 Padova, Italy
2 Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti, 1, 56127 Pisa, Italy
3 Dipartimento di Matematica, Università di Parma, viale G.P. Usberti, 53A, 43124 Parma, Italy
@article{CRMATH_2010__348_9-10_525_0,
     author = {Barbato, D. and Flandoli, Franco and Morandin, Francesco},
     title = {A theorem of uniqueness for an inviscid dyadic model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {525--528},
     publisher = {Elsevier},
     volume = {348},
     number = {9-10},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.007/}
}
TY  - JOUR
AU  - Barbato, D.
AU  - Flandoli, Franco
AU  - Morandin, Francesco
TI  - A theorem of uniqueness for an inviscid dyadic model
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 525
EP  - 528
VL  - 348
IS  - 9-10
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.007/
DO  - 10.1016/j.crma.2010.03.007
LA  - en
ID  - CRMATH_2010__348_9-10_525_0
ER  - 
%0 Journal Article
%A Barbato, D.
%A Flandoli, Franco
%A Morandin, Francesco
%T A theorem of uniqueness for an inviscid dyadic model
%J Comptes Rendus. Mathématique
%D 2010
%P 525-528
%V 348
%N 9-10
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.007/
%R 10.1016/j.crma.2010.03.007
%G en
%F CRMATH_2010__348_9-10_525_0
Barbato, D.; Flandoli, Franco; Morandin, Francesco. A theorem of uniqueness for an inviscid dyadic model. Comptes Rendus. Mathématique, Tome 348 (2010) no. 9-10, pp. 525-528. doi : 10.1016/j.crma.2010.03.007. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.03.007/

[1] Barbato, D.; Flandoli, F.; Morandin, F. Energy dissipation and self-similar solutions for an unforced inviscid dyadic model (Trans. Amer. Math. Soc., in press) | arXiv

[2] Barbato, D.; Flandoli, F.; Morandin, F. Uniqueness for a stochastic inviscid dyadic model (Proc. Amer. Math. Soc., in press) | arXiv

[3] Cheskidov, A. Blow-up in finite time for the dyadic model of the Navier–Stokes equations, Trans. Amer. Math. Soc., Volume 360 (2008) no. 10, pp. 5101-5120

[4] De Lellis, C.; Székelyhidi, L. On admissibility criteria for weak solutions of the Euler equations | arXiv

[5] Friedlander, S.; Pavlovic, N. Blowup in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math., Volume 57 (2004) no. 6, pp. 705-725

[6] Katz, N.H.; Pavlovic, N. Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., Volume 357 (2005) no. 2, pp. 695-708

[7] Kiselev, A.; Zlatoš, A. On discrete models of the Euler equation, IMRN, Volume 38 (2005) no. 38, pp. 2315-2339

[8] Leray, J. Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934) no. 1, pp. 193-248

[9] Waleffe, F. On some dyadic models of the Euler equations, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 2913-2922

Cité par Sources :