Voir la notice de l'article provenant de la source Numdam
In this Note, we study Q-curvature flow on with indefinite nonlinearity. Our result is that the prescribed Q-curvature problem on has a solution provided the prescribed non-negative Q-curvature f has its positive part, which possesses non-degenerate critical points such that at the saddle points and an extra condition such as a nontrivial degree counting condition.
Dans cette Note on étudie le flot de Q-courbure sur dans le cas d'une non-linéarité indéfinie. Le résultat montre que le problème de la Q-courbure imposée sur a une solution à condition que la Q-courbure non négative imposée f ait une partie strictement positive et des points critiques non dégénérés tels que aux points selles et une condition supplémentaire du type condition non triviale sur le degré.
Ma, Li 1 ; Liu, B. 1
@article{CRMATH_2010__348_7-8_403_0, author = {Ma, Li and Liu, B.}, title = {Q-curvature flow with indefinite nonlinearity}, journal = {Comptes Rendus. Math\'ematique}, pages = {403--406}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2010.02.014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.02.014/} }
TY - JOUR AU - Ma, Li AU - Liu, B. TI - Q-curvature flow with indefinite nonlinearity JO - Comptes Rendus. Mathématique PY - 2010 SP - 403 EP - 406 VL - 348 IS - 7-8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.02.014/ DO - 10.1016/j.crma.2010.02.014 LA - en ID - CRMATH_2010__348_7-8_403_0 ER -
Ma, Li; Liu, B. Q-curvature flow with indefinite nonlinearity. Comptes Rendus. Mathématique, Tome 348 (2010) no. 7-8, pp. 403-406. doi : 10.1016/j.crma.2010.02.014. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.02.014/
[1] Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer, Berlin, 1998 MR1636569 (99i:58001)
[2] Q-curvature flow on 4-manifolds, Calc. Var., Volume 27 (2006) no. 1, pp. 75-104
[3] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. of Math., Volume 138 (1993), pp. 213-242
[4] Global existence and convergence for a higher order flow in conformal geometry, Ann. of Math., Volume 158 (2003), pp. 323-343
[5] Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math., Volume 142 (1995), pp. 171-212
[6] Curvature flow to Nirenberg problem, Arch. Math., Volume 242 (2010) (online)
[7] A classification of solutions of conformally invariant fourth order equation in , Comment. Math. Helv., Volume 73 (1998), pp. 206-231 (MR1611691, Zbl0933.35057)
[8] Three remarks on mean field equations, Pacific J. Math., Volume 242 (2009), pp. 167-171
[9] Q-curvature flow on , J. Differential Geom., Volume 73 (2006), pp. 1-44
[10] Curvature flows on surfaces, Ann. Sc. Norm. Sup. Pisa, Ser. V, Volume 1 (2002), pp. 247-274
[11] On conformal deformation of metrics on , J. Funct. Anal., Volume 157 (1998), pp. 292-325
Cité par Sources :
☆ The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20090002110019.