Probability Theory
The survival probability of a critical branching process in a Markovian random environment
[La probabilité de survie d'un processus de branchement critique en environnement aléatoire Markovien]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 5-6, pp. 301-304.

Voir la notice de l'article provenant de la source Numdam

In this Note, we first prove a local limit theorem for a semi-Markov chain and then apply it to study the asymptotic behavior of the survival probability of a critical branching process in Markovian random environment.

Dans cette Note, nous montrons d'abord un théorème de la limite locale pour une chaîne semi-Markovienne. Nous appliquons ensuite ce résultat pour étudier le comportement asymptotique de la probabilité de survie d'un processus de branchement critique dans un milieu aléatoire Markovien.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.01.014

Le Page, Emile 1 ; Ye, Yinna 1, 2

1 LMAM, université de Bretagne-Sud, campus de Tohannic, BP 573, 56017 Vannes, France
2 LMPT, UFR sciences et techniques, université François-Rabelais, parc de Grandmont, 37200 Tours, France
@article{CRMATH_2010__348_5-6_301_0,
     author = {Le Page, Emile and Ye, Yinna},
     title = {The survival probability of a critical branching process in a {Markovian} random environment},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {301--304},
     publisher = {Elsevier},
     volume = {348},
     number = {5-6},
     year = {2010},
     doi = {10.1016/j.crma.2010.01.014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/}
}
TY  - JOUR
AU  - Le Page, Emile
AU  - Ye, Yinna
TI  - The survival probability of a critical branching process in a Markovian random environment
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 301
EP  - 304
VL  - 348
IS  - 5-6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/
DO  - 10.1016/j.crma.2010.01.014
LA  - en
ID  - CRMATH_2010__348_5-6_301_0
ER  - 
%0 Journal Article
%A Le Page, Emile
%A Ye, Yinna
%T The survival probability of a critical branching process in a Markovian random environment
%J Comptes Rendus. Mathématique
%D 2010
%P 301-304
%V 348
%N 5-6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/
%R 10.1016/j.crma.2010.01.014
%G en
%F CRMATH_2010__348_5-6_301_0
Le Page, Emile; Ye, Yinna. The survival probability of a critical branching process in a Markovian random environment. Comptes Rendus. Mathématique, Tome 348 (2010) no. 5-6, pp. 301-304. doi : 10.1016/j.crma.2010.01.014. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/

[1] Athreya, K.B.; Karlin, S. On branching processes with random environments: I and II, Ann. Math. Stat., Volume 42 (1971), pp. 1499-1520 (1843–1858)

[2] Borovkov, A.A. New limit theorems in boundary problems for sums of independent terms, Sibirsk. Mat. Zh. (Selected Transl. Math. Stat. and Probab.), Volume 3 (1962), pp. 645-694 (English transl., vol. 5, 1965, pp. 315-372)

[3] Feller, W. An Introduction to Probability Theory and Its Applications, vol. II, Wiley, New York, 1971

[4] Geiger, J.; Kersting, G. The survival probability of a critical branching process in random environment, Theor. Veroyatnost. i Primenen., Volume 45 (2000), pp. 607-615

[5] Guivarc'h, Y.; Le Page, E.; Liu, Q. Normalisation d'un processus de branchement critique dans un environnement aléatoire, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 603-608

[6] Presman, E.L. Factorization methods and a boundary value problem for sum of random variables defined on a Markov chain, Math. USSR-Izv., Volume 3 (1969) no. 4, pp. 815-852

Cité par Sources :