Voir la notice de l'article provenant de la source Numdam
In this Note, we first prove a local limit theorem for a semi-Markov chain and then apply it to study the asymptotic behavior of the survival probability of a critical branching process in Markovian random environment.
Dans cette Note, nous montrons d'abord un théorème de la limite locale pour une chaîne semi-Markovienne. Nous appliquons ensuite ce résultat pour étudier le comportement asymptotique de la probabilité de survie d'un processus de branchement critique dans un milieu aléatoire Markovien.
Le Page, Emile 1 ; Ye, Yinna 1, 2
@article{CRMATH_2010__348_5-6_301_0, author = {Le Page, Emile and Ye, Yinna}, title = {The survival probability of a critical branching process in a {Markovian} random environment}, journal = {Comptes Rendus. Math\'ematique}, pages = {301--304}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/} }
TY - JOUR AU - Le Page, Emile AU - Ye, Yinna TI - The survival probability of a critical branching process in a Markovian random environment JO - Comptes Rendus. Mathématique PY - 2010 SP - 301 EP - 304 VL - 348 IS - 5-6 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/ DO - 10.1016/j.crma.2010.01.014 LA - en ID - CRMATH_2010__348_5-6_301_0 ER -
%0 Journal Article %A Le Page, Emile %A Ye, Yinna %T The survival probability of a critical branching process in a Markovian random environment %J Comptes Rendus. Mathématique %D 2010 %P 301-304 %V 348 %N 5-6 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/ %R 10.1016/j.crma.2010.01.014 %G en %F CRMATH_2010__348_5-6_301_0
Le Page, Emile; Ye, Yinna. The survival probability of a critical branching process in a Markovian random environment. Comptes Rendus. Mathématique, Tome 348 (2010) no. 5-6, pp. 301-304. doi : 10.1016/j.crma.2010.01.014. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2010.01.014/
[1] On branching processes with random environments: I and II, Ann. Math. Stat., Volume 42 (1971), pp. 1499-1520 (1843–1858)
[2] New limit theorems in boundary problems for sums of independent terms, Sibirsk. Mat. Zh. (Selected Transl. Math. Stat. and Probab.), Volume 3 (1962), pp. 645-694 (English transl., vol. 5, 1965, pp. 315-372)
[3] An Introduction to Probability Theory and Its Applications, vol. II, Wiley, New York, 1971
[4] The survival probability of a critical branching process in random environment, Theor. Veroyatnost. i Primenen., Volume 45 (2000), pp. 607-615
[5] Normalisation d'un processus de branchement critique dans un environnement aléatoire, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 603-608
[6] Factorization methods and a boundary value problem for sum of random variables defined on a Markov chain, Math. USSR-Izv., Volume 3 (1969) no. 4, pp. 815-852
Cité par Sources :