Partial Differential Equations/Probability Theory
On Monge–Kantorovich problem in the plane
[Sur le problème de Monge–Kantorovich du plan]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 5-6, pp. 267-271.

Voir la notice de l'article provenant de la source Numdam

We use a simple probability method to transform the celebrated Monge–Kantorovich problem in a bounded region of Euclidean plane into a Dirichlet boundary problem associated to a quasi-linear elliptic equation with 0-order term missing in its diffusion coefficients:

xA(x,Fx)+yB(y,Fy)=0
where Ay(.,.)>0,Bx(.,.)>0 and F is an unknown probability distribution function. Thus, we are able to give a probability approach to the famous Monge–Ampère equation, which is known to be associated to the above problem.

Nous utilisons une méthode probabiliste pour transformer le célèbre problème de Monge–Kantorovich dans une région bornée du plan Euclidien à celui de Dirichlet associé à une équation aux dérivées partielles quasi-linéaire :

xA(x,Fx)+yB(y,Fy)=0
Ay(.,.)>0,Bx(.,.)>0, et F est une loi de probabilité inconnue. Ainsi, nous avons développé une nouvelle méthode probabiliste pour l'équation de Monge–Ampère associé au problème ci-dessus.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.11.022

Shen, Yinfang 1, 2 ; Zheng, Weian 1, 2

1 SFS, ITCS, East China Normal University, Shanghai, China, 200062
2 Department of Mathematics, University of California, Irvine, CA 92697, USA
@article{CRMATH_2010__348_5-6_267_0,
     author = {Shen, Yinfang and Zheng, Weian},
     title = {On {Monge{\textendash}Kantorovich} problem in the plane},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {267--271},
     publisher = {Elsevier},
     volume = {348},
     number = {5-6},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.022/}
}
TY  - JOUR
AU  - Shen, Yinfang
AU  - Zheng, Weian
TI  - On Monge–Kantorovich problem in the plane
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 267
EP  - 271
VL  - 348
IS  - 5-6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.022/
DO  - 10.1016/j.crma.2009.11.022
LA  - en
ID  - CRMATH_2010__348_5-6_267_0
ER  - 
%0 Journal Article
%A Shen, Yinfang
%A Zheng, Weian
%T On Monge–Kantorovich problem in the plane
%J Comptes Rendus. Mathématique
%D 2010
%P 267-271
%V 348
%N 5-6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.022/
%R 10.1016/j.crma.2009.11.022
%G en
%F CRMATH_2010__348_5-6_267_0
Shen, Yinfang; Zheng, Weian. On Monge–Kantorovich problem in the plane. Comptes Rendus. Mathématique, Tome 348 (2010) no. 5-6, pp. 267-271. doi : 10.1016/j.crma.2009.11.022. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.022/

[1] L. Ambrosio, Optimal transport maps in Monge–Kantorovich problem, in: Proceedings of ICM, Beijing 2002, vol. iii, 2002, pp. 131–140

[2] Brenier, Y. Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris, Ser. I Math., Volume 305 (1987), pp. 805-808

[3] Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., Volume 44 (1991), pp. 375-417

[4] L. Caffarelli, Nonlinear elliptic theory and the Monge–Ampere equation, in: Proc. ICM, vol. i, 2002, pp. 179–187

[5] Evans, L.C.; Gangbo, W. Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., Volume 137 (1999) no. 653

[6] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983

[7] Rachev, S.T.; Rüschendorf, L.; Rachev, S.T.; Rüschendorf, L. Mass Transportation Problems, vol I: Theory, Probability and Its ApplicationsMass Transportation Problems, vol. II: Applications, Probability and Its Applications, Springer-Verlag, 1998

[8] N. Trudinger, Recent developments in elliptic partial differential equations of Monge–Ampère type, in: Proc. ICM, 2006, invited lecture

Cité par Sources :