Voir la notice de l'article provenant de la source Numdam
We prove the existence and uniqueness of a solution for reflected backward doubly stochastic differential equations (RBDSDEs) driven by Teugels martingales associated with a Lévy process, in which the obstacle process is right continuous with left limits (càdlàg), via Snell envelope and the fixed point theorem.
On démontre l'existence et l'unicité de la solution d'équations différentielles doublement stochastiques rétrogrades réfléchies (RBDSDE) gouvernées par des martingales de Teugels associées à un processus de Lévy dans lequel le processus obstacle est continu à droite et possède une limite à gauche (càdlàg), via l'enveloppe de Snell et un théorème de point fixe.
Ren, Yong 1
@article{CRMATH_2010__348_7-8_439_0, author = {Ren, Yong}, title = {Reflected backward doubly stochastic differential equations driven by a {L\'evy} process}, journal = {Comptes Rendus. Math\'ematique}, pages = {439--444}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2009.11.004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.004/} }
TY - JOUR AU - Ren, Yong TI - Reflected backward doubly stochastic differential equations driven by a Lévy process JO - Comptes Rendus. Mathématique PY - 2010 SP - 439 EP - 444 VL - 348 IS - 7-8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.004/ DO - 10.1016/j.crma.2009.11.004 LA - en ID - CRMATH_2010__348_7-8_439_0 ER -
%0 Journal Article %A Ren, Yong %T Reflected backward doubly stochastic differential equations driven by a Lévy process %J Comptes Rendus. Mathématique %D 2010 %P 439-444 %V 348 %N 7-8 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.004/ %R 10.1016/j.crma.2009.11.004 %G en %F CRMATH_2010__348_7-8_439_0
Ren, Yong. Reflected backward doubly stochastic differential equations driven by a Lévy process. Comptes Rendus. Mathématique, Tome 348 (2010) no. 7-8, pp. 439-444. doi : 10.1016/j.crma.2009.11.004. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.004/
[1] One barrier reflected backward doubly stochastic differential equations with continuous generator, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1201-1206
[2] Reflected BSDEs with discontinuous barrier and applications, Stochastics Stochastics Rep., Volume 74 (2002), pp. 571-596
[3] Reflected backward stochastic differential equations with jumps and random obstacle, Electron. J. Probab., Volume 8 (2003), pp. 1-20
[4] Semimartingale and Stochastic Analysis, Scientific Press, Beijing, 1995
[5] Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Statist. Probab. Lett., Volume 75 (2005), pp. 58-66
[6] Chaotic and predictable representation for Lévy processes, Stochastic Process. Appl., Volume 90 (2000), pp. 109-122
[7] Reflected backward stochastic differential equation driven by Lévy processes, Statist. Probab. Lett., Volume 77 (2007), pp. 1559-1566
[8] Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math., Volume 223 (2009), pp. 901-907
Cité par Sources :
☆ The work is supported by the National Natural Science Foundation of China (Project 10901003) and the Great Research Project of Natural Science Foundation of Anhui Provincial Universities.