Dynamical Systems
Affability of Euclidean tilings
[Affabilité des pavages euclidiens]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 15-16, pp. 947-952.

Voir la notice de l'article provenant de la source Numdam

We prove that every minimal equivalence relation on a Cantor set arising from the continuous hull of an aperiodic and repetitive Euclidean tiling is affable.

Nous prouvons que toute relation d'équivalence définie sur l'ensemble de Cantor par l'enveloppe d'un pavage euclidien apériodique et répétitif est affable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.011

Alcalde Cuesta, Fernando 1 ; González Sequeiros, Pablo 1 ; Lozano Rojo, Álvaro 2

1 Dpto. Xeometría e Topoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
2 Dpto. Matemáticas, Universidad del País Vasco-Euskal Herriko Unibertsitatea, 48940 Leioa, Spain
@article{CRMATH_2009__347_15-16_947_0,
     author = {Alcalde Cuesta, Fernando and Gonz\'alez Sequeiros, Pablo and Lozano Rojo, \'Alvaro},
     title = {Affability of {Euclidean} tilings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {947--952},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.06.011/}
}
TY  - JOUR
AU  - Alcalde Cuesta, Fernando
AU  - González Sequeiros, Pablo
AU  - Lozano Rojo, Álvaro
TI  - Affability of Euclidean tilings
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 947
EP  - 952
VL  - 347
IS  - 15-16
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.06.011/
DO  - 10.1016/j.crma.2009.06.011
LA  - en
ID  - CRMATH_2009__347_15-16_947_0
ER  - 
%0 Journal Article
%A Alcalde Cuesta, Fernando
%A González Sequeiros, Pablo
%A Lozano Rojo, Álvaro
%T Affability of Euclidean tilings
%J Comptes Rendus. Mathématique
%D 2009
%P 947-952
%V 347
%N 15-16
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.06.011/
%R 10.1016/j.crma.2009.06.011
%G en
%F CRMATH_2009__347_15-16_947_0
Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro. Affability of Euclidean tilings. Comptes Rendus. Mathématique, Tome 347 (2009) no. 15-16, pp. 947-952. doi : 10.1016/j.crma.2009.06.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.06.011/

[1] Alcalde Cuesta, F.; Lozano Rojo, Á.; Macho Stadler, M. Dynamique transverse de la lamination de Ghys–Kenyon, Astérisque, Volume 323 (2009)

[2] Bellissard, J.; Benedetti, R.; Gambaudo, J.M. Spaces of tilings, finite telescopic approximations and gap-labelling, Comm. Math. Phys., Volume 261 (2006), pp. 1-41

[3] Ghys, E. Laminations par surfaces de Riemann, Panor. Syntheses, Volume 8 (1999), pp. 49-95

[4] Giordano, T.; Putnam, I.; Skau, C. Affable equivalence relations and orbit structure of Cantor minimal systems, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 441-475

[5] Giordano, T.; Matui, H.; Putnam, I.; Skau, C. Orbit equivalence for Cantor minimal Z2-systems, J. Amer. Math. Soc., Volume 21 (2008), pp. 863-892

[6] Giordano, T.; Matui, H.; Putnam, I.; Skau, C. The absorption theorem for affable equivalence relations, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1509-1531

[7] Giordano, T.; Matui, H.; Putnam, I.; Skau, C. Orbit equivalence for Cantor minimal Zd-systems | arXiv

[8] Grünbaum, B.; Shephard, G.C. Tilings and Patterns, W.H. Freeman & Co., New York, 1987

[9] Á. Lozano Rojo, Dinámica transversa de laminaciones definidas por grafos repetitivos, UPV-EHU Ph.D. thesis, 2008

[10] Matui, H. Affability of equivalence relations arising from two-dimensional substitution tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 467-480

[11] Oxtoby, J.C. Ergodics sets, Bull. Amer. Math. Soc., Volume 58 (1952), pp. 116-136

[12] Petite, S. On invariant measures of finite affine type tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1159-1176

[13] Robinson, R.M. Undecidability and nonperiodicity of tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209

[14] Series, C. Foliations of polynomial growth are hyperfinite, Israel J. Math., Volume 34 (1979), pp. 245-258

Cité par Sources :

This work was supported by the Spanish Ministry of Education and Science (Research Projects MTM2004-08214 and MTM2007-66262), the University of the Basque Country (R. Project EHU 06/05), and the Spanish Network of Topology.