Voir la notice de l'article provenant de la source Numdam
We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke–Santaló inequality.
On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste.
Lehec, Joseph 1
@article{CRMATH_2009__347_1-2_55_0, author = {Lehec, Joseph}, title = {A direct proof of the functional {Santal\'o} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--58}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.11.015/} }
TY - JOUR AU - Lehec, Joseph TI - A direct proof of the functional Santaló inequality JO - Comptes Rendus. Mathématique PY - 2009 SP - 55 EP - 58 VL - 347 IS - 1-2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.11.015/ DO - 10.1016/j.crma.2008.11.015 LA - en ID - CRMATH_2009__347_1-2_55_0 ER -
Lehec, Joseph. A direct proof of the functional Santaló inequality. Comptes Rendus. Mathématique, Tome 347 (2009) no. 1-2, pp. 55-58. doi : 10.1016/j.crma.2008.11.015. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.11.015/
[1] The Santaló point of a function, and a functional form of Santaló inequality, Mathematika, Volume 51 (2005), pp. 33-48
[2] K. Ball, Isometric problems in and sections of convex sets, Doctoral thesis, University of Cambridge, 1986
[3] An elementary introduction to modern convex geometry (Levy, S., ed.), Flavors of Geometry, Cambridge University Press, 1997
[4] Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395
[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press
[6] Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68
[7] On the Blaschke Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
Cité par Sources :