Partial Differential Equations
Inequalities related to liftings and applications
[Inégalités relatives aux relèvements et applications]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 957-962.

Voir la notice de l'article provenant de la source Numdam

We present two inequalities for liftings of smooth maps from the torus Td into the unit circle S1. Using these inequalities, we answer a question of J. Bourgain, H. Brezis, and P. Mironescu in [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005) 529–551] and establish an estimate of liftings in the spirit of R.R. Coifman and Y. Meyer [R.R. Coifman, Y. Meyer, Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, in: Fourier Analysis, in: Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87–116].

Nous présentons deux inégalités pour des relèvements des applications régulières du tore Td dans le cercle unité S1. Ces inégalités nous permettent de répondre à une question de J. Bourgain, H. Brezis, et P. Mironescu dans [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005) 529–551] et d'établir une estimation des relèvements dans l'esprit de R.R. Coifman et Y. Meyer [R.R. Coifman, Y. Meyer, Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, in : Fourier Analysis, in : Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87–116].

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.07.026

Nguyen, Hoai-Minh 1

1 Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
@article{CRMATH_2008__346_17-18_957_0,
     author = {Nguyen, Hoai-Minh},
     title = {Inequalities related to liftings and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {957--962},
     publisher = {Elsevier},
     volume = {346},
     number = {17-18},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.07.026/}
}
TY  - JOUR
AU  - Nguyen, Hoai-Minh
TI  - Inequalities related to liftings and applications
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 957
EP  - 962
VL  - 346
IS  - 17-18
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.07.026/
DO  - 10.1016/j.crma.2008.07.026
LA  - en
ID  - CRMATH_2008__346_17-18_957_0
ER  - 
%0 Journal Article
%A Nguyen, Hoai-Minh
%T Inequalities related to liftings and applications
%J Comptes Rendus. Mathématique
%D 2008
%P 957-962
%V 346
%N 17-18
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.07.026/
%R 10.1016/j.crma.2008.07.026
%G en
%F CRMATH_2008__346_17-18_957_0
Nguyen, Hoai-Minh. Inequalities related to liftings and applications. Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 957-962. doi : 10.1016/j.crma.2008.07.026. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.07.026/

[1] Bourgain, J.; Brezis, H. On the equation divY=f and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426

[2] Bourgain, J.; Brezis, H.; Mironescu, P. H12 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Etudes Sci., Volume 99 (2004), pp. 1-115

[3] Bourgain, J.; Brezis, H.; Mironescu, P. Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math., Volume 58 (2005), pp. 529-551

[4] Bourgain, J.; Brezis, H.; Nguyen, H.-M. A new estimate for the topological degree, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 787-791

[5] Brezis, H.; Nirenberg, L. Degree theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math., Volume 1 (1995), pp. 197-263

[6] Coifman, R.R.; Meyer, Y. Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, Fourier Analysis, Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87-116

[7] Mironescu, P. Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 413-436 (In honor of Ham Brezis)

[8] Mironescu, P. Lifting default for S1-valued maps, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) | DOI

[9] Nguyen, H.-M. Optimal constant in a new estimate for the degree, J. d'Analyse Math., Volume 101 (2007), pp. 367-395

Cité par Sources :