Partial Differential Equations
Inverse problem for the Schrödinger operator in an unbounded strip
[Un problème inverse pour l'opérateur de Schrödinger dans une bande]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 635-640.

Voir la notice de l'article provenant de la source Numdam

We prove an adapted global Carleman estimate and an energy estimate for the Schrödinger operator H:=it+(c) in an unbounded strip. Using these estimates, we give a stability result for the diffusion coefficient c(x,y) from the measurement of the normal derivative of the solution on a part of the boundary.

Nous démontrons une estimation globale de Carleman et une estimation d'énergie pour l'opérateur de Schrödinger H:=it+(c) dans une bande non bornée. Ces estimations nous permettent de donner un résultat de stabilité pour le coefficient de diffusion c(x,y) à partir de la mesure de la dérivée normale de la solution sur une partie du bord.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.04.004

Cardoulis, Laure 1 ; Cristofol, Michel 2 ; Gaitan, Patricia 2

1 CEREMATH/UMR MIP, Université de Toulouse 1, 21, allées de Brienne, 31000 Toulouse, France
2 Laboratoire d'Analyse Topologie Probabilités, CNRS UMR 6632, Universités d'Aix-Marseille, 13453 Marseille cedex, France
@article{CRMATH_2008__346_11-12_635_0,
     author = {Cardoulis, Laure and Cristofol, Michel and Gaitan, Patricia},
     title = {Inverse problem for the {Schr\"odinger} operator in an unbounded strip},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {635--640},
     publisher = {Elsevier},
     volume = {346},
     number = {11-12},
     year = {2008},
     doi = {10.1016/j.crma.2008.04.004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.04.004/}
}
TY  - JOUR
AU  - Cardoulis, Laure
AU  - Cristofol, Michel
AU  - Gaitan, Patricia
TI  - Inverse problem for the Schrödinger operator in an unbounded strip
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 635
EP  - 640
VL  - 346
IS  - 11-12
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.04.004/
DO  - 10.1016/j.crma.2008.04.004
LA  - en
ID  - CRMATH_2008__346_11-12_635_0
ER  - 
%0 Journal Article
%A Cardoulis, Laure
%A Cristofol, Michel
%A Gaitan, Patricia
%T Inverse problem for the Schrödinger operator in an unbounded strip
%J Comptes Rendus. Mathématique
%D 2008
%P 635-640
%V 346
%N 11-12
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.04.004/
%R 10.1016/j.crma.2008.04.004
%G en
%F CRMATH_2008__346_11-12_635_0
Cardoulis, Laure; Cristofol, Michel; Gaitan, Patricia. Inverse problem for the Schrödinger operator in an unbounded strip. Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 635-640. doi : 10.1016/j.crma.2008.04.004. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.04.004/

[1] Baudouin, L.; Puel, J.P. Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554

[2] Immanuvilov, O.Yu.; Isakov, V.; Yamamoto, M. An inverse problem for the dynamical Lamé system with two set of boundary data, Comm. Pure Appl. Math., Volume 56, 1 (2003) no. 17, pp. 1366-1382

[3] Immanuvilov, O.Yu.; Yamamoto, M. Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM Control Optim. Calc. Var., Volume 11 (2005) no. 1, pp. 1-56

[4] Isakov, V. Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998

[5] Klibanov, M.V.; Yamamoto, M. Lipschitz stability for an inverse problem for an acoustic equation, Appl. Anal., Volume 85 (2006), pp. 515-538

[6] Klibanov, M.V.; Timonov, A. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse and Ill-Posed Series, VSP, Utrecht, 2004

[7] Lasiecka, I.; Triggiani, R.; Zhang, X. Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates, J. Inv. Ill-Posed Problems, Volume 11 (2003) no. 3, pp. 1-96

Cité par Sources :