Number Theory
Torsion anomalous points and families of elliptic curves
[Points de torsion et familles de courbes elliptiques]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 491-494.

Voir la notice de l'article provenant de la source Numdam

We prove that there are at most finitely many complex λ0,1 such that two points on the Legendre elliptic curve Y2=X(X1)(Xλ) with coordinates X=2 and X=3 both have finite order. This is a very special case of some well-known conjectures on unlikely intersections with varying semiabelian varieties.

Comme cas très spécial de certaines conjectures générales sur l'intersection d'une variété algébrique avec la réunion des sous-schémas de dimension fixée d'un schéma semi-abélien, nous montrons qu'il n'existe qu'un nombre fini de λC{0,1} tels que les quatre points de la courbe elliptique Y2=X(X1)(Xλ) avec X=2 et X=3 soient d'ordre fini.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.03.024

Masser, David 1 ; Zannier, Umberto 2

1 Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland
2 Scuola Normale, Piazza Cavalieri 7, 56126 Pisa, Italy
@article{CRMATH_2008__346_9-10_491_0,
     author = {Masser, David and Zannier, Umberto},
     title = {Torsion anomalous points and families of elliptic curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {491--494},
     publisher = {Elsevier},
     volume = {346},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crma.2008.03.024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.03.024/}
}
TY  - JOUR
AU  - Masser, David
AU  - Zannier, Umberto
TI  - Torsion anomalous points and families of elliptic curves
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 491
EP  - 494
VL  - 346
IS  - 9-10
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.03.024/
DO  - 10.1016/j.crma.2008.03.024
LA  - en
ID  - CRMATH_2008__346_9-10_491_0
ER  - 
%0 Journal Article
%A Masser, David
%A Zannier, Umberto
%T Torsion anomalous points and families of elliptic curves
%J Comptes Rendus. Mathématique
%D 2008
%P 491-494
%V 346
%N 9-10
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.03.024/
%R 10.1016/j.crma.2008.03.024
%G en
%F CRMATH_2008__346_9-10_491_0
Masser, David; Zannier, Umberto. Torsion anomalous points and families of elliptic curves. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 491-494. doi : 10.1016/j.crma.2008.03.024. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2008.03.024/

[1] Bombieri, E.; Masser, D.; Zannier, U. Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Notices, Volume 20 (1999), pp. 1119-1140

[2] Bombieri, E.; Pila, J. The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989), pp. 337-357

[3] David, S. Points de petite hauteur sur les courbes elliptiques, J. Number Theory, Volume 64 (1997), pp. 104-129

[4] Husemöller, D. Elliptic Curves, Springer-Verlag, 1987

[5] Masser, D. Small values of the quadratic part of the Néron–Tate height on an abelian variety, Compositio Math., Volume 53 (1984), pp. 153-170

[6] Masser, D. Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc., Volume 311 (1989), pp. 413-424

[7] Masser, D. Counting points of small height on elliptic curves, Bull. Soc. Math. France, Volume 117 (1989), pp. 247-265

[8] Pila, J. Integer points on the dilation of a subanalytic surface, Quart. J. Math., Volume 55 (2004), pp. 207-223

[9] Pila, J.; Wilkie, A. The rational points of a definable set, Duke Math. J., Volume 33 (2006), pp. 591-616

[10] J. Pila, U. Zannier, Rational points in periodic analytic sets and the Manin–Mumford conjecture, Rend. Lincei Mat. Appl. (RML), in press

[11] R. Pink, A common generalization of the conjectures of André–Oort, Manin–Mumford, and Mordell–Lang, manuscript dated 17th April 2005 (13 pages)

[12] Silverman, J.H. Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211

[13] Zilber, B. Exponential sums equations and the Schanuel conjecture, J. London Math. Soc., Volume 65 (2002), pp. 27-44

Cité par Sources :