Voir la notice de l'article provenant de la source Numdam
In this Note we compute the full homotopy type of the space of symplectic embeddings of the standard ball with capacity into the 4-dimensional rational symplectic manifold where μ belongs to the interval and c is above the critical value .
Dans cette Note, nous calculons le type d'homotopie complet de l'espace des plongements symplectiques de la boule standard de capacité dans la 4-variété rationnelle où μ appartient à l'intervalle et c est plus grand que la valeur critique .
Anjos, Sílvia 1 ; Lalonde, François 2
@article{CRMATH_2007__345_11_639_0, author = {Anjos, S{\'\i}lvia and Lalonde, Fran\c{c}ois}, title = {The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {639--642}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.025}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.025/} }
TY - JOUR AU - Anjos, Sílvia AU - Lalonde, François TI - The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 639 EP - 642 VL - 345 IS - 11 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.025/ DO - 10.1016/j.crma.2007.10.025 LA - en ID - CRMATH_2007__345_11_639_0 ER -
%0 Journal Article %A Anjos, Sílvia %A Lalonde, François %T The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$ %J Comptes Rendus. Mathématique %D 2007 %P 639-642 %V 345 %N 11 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.025/ %R 10.1016/j.crma.2007.10.025 %G en %F CRMATH_2007__345_11_639_0
Anjos, Sílvia; Lalonde, François. The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$. Comptes Rendus. Mathématique, Tome 345 (2007) no. 11, pp. 639-642. doi : 10.1016/j.crma.2007.10.025. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.025/
[1] Homotopy decomposition of a group of symplectomorphisms of , Topology, Volume 43 (2004), pp. 599-618
[2] The homotopy type of the space of symplectic balls in above the critical value | arXiv
[3] S. Anjos, F. Lalonde, M. Pinsonnault, in preparation
[4] Groupes d'automorphismes et plongements symplectiques de boules dans les variétés rationelles, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 931-934
[5] The topology of the space of symplectic balls in rational 4-manifolds, Duke Math. J., Volume 122 (2004) no. 2, pp. 347-397
[6] M. Pinsonnault, Symplectomorphism groups and embeddings of balls into rational ruled surfaces, Compositio Math., in press
Cité par Sources :