Voir la notice de l'article provenant de la source Numdam
Let be the abscissa of absolute convergence of the dynamical zeta function for several disjoint strictly convex compact obstacles and let , be the cut-off resolvent of the Dirichlet Laplacian in . We prove that there exists such that is analytic for and the cut-off resolvent has an analytic continuation for .
Soit l'abscisse de convergence absolue de la fonciton zeta dynamique pour des obstacles compacts, disjoints et strictement convexes et soit , la résolvante tronquée du Laplacien de Dirichlet dans . On prouve qu'il existe tel que est analytique pour et la résolvante tronquée admet un prolongement analytique pour .
Petkov, Vesselin 1 ; Stoyanov, Latchezar 2
@article{CRMATH_2007__345_10_567_0, author = {Petkov, Vesselin and Stoyanov, Latchezar}, title = {Analytic continuation of the resolvent of the {Laplacian} and the dynamical zeta function}, journal = {Comptes Rendus. Math\'ematique}, pages = {567--572}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.019/} }
TY - JOUR AU - Petkov, Vesselin AU - Stoyanov, Latchezar TI - Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function JO - Comptes Rendus. Mathématique PY - 2007 SP - 567 EP - 572 VL - 345 IS - 10 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.019/ DO - 10.1016/j.crma.2007.10.019 LA - en ID - CRMATH_2007__345_10_567_0 ER -
%0 Journal Article %A Petkov, Vesselin %A Stoyanov, Latchezar %T Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function %J Comptes Rendus. Mathématique %D 2007 %P 567-572 %V 345 %N 10 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.019/ %R 10.1016/j.crma.2007.10.019 %G en %F CRMATH_2007__345_10_567_0
Petkov, Vesselin; Stoyanov, Latchezar. Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function. Comptes Rendus. Mathématique, Tome 345 (2007) no. 10, pp. 567-572. doi : 10.1016/j.crma.2007.10.019. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.10.019/
[1] Controle de l'équation des plaques en présence d'obstacles strictement convexes, Mém. Soc. Math. France, Volume 55 (1993), p. 126
[2] On decay of correlations in Anosov flows, Ann. Math., Volume 147 (1998), pp. 357-390
[3] Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, Volume 2 (1988), pp. 113-146
[4] Singular perturbations of symbolic flows and the poles of the zeta function, Osaka J. Math., Volume 27 (1990), pp. 281-300
[5] On zeta function and scattering poles for several convex bodies, Conf. EDP, Saint-Jean de Monts, SMF, 1994
[6] On scattering by several convex bodies, J. Korean Math. Soc., Volume 37 (2000), pp. 991-1005
[7] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Volume 187–188 (1990)
[8] Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley & Sons, 1992
[9] Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math., Volume 123 (2001), pp. 715-759
[10] L. Stoyanov, Spectra of Ruelle transfer operators for contact flows on basic sets, Preprint, 2007
Cité par Sources :