Voir la notice de l'article provenant de la source Numdam
We study the variational problem associated to the norm of the angular acceleration for curve variations of constant length. We determine the unit speed closed critical curves with constant slant in .
Nous étudions le problème variationnel associé à la norme de l'accélération angulaire pour des variations de courbe de longueur constante. Nous déterminons les courbes critiques fermées paramétrées par des abscisses curvilignes à pente constante en .
Arroyo, Josu 1 ; Garay, Óscar J. 1 ; Mencía, José J. 1
@article{CRMATH_2007__345_3_161_0, author = {Arroyo, Josu and Garay, \'Oscar J. and Menc{\'\i}a, Jos\'e J.}, title = {Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--166}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.06.015/} }
TY - JOUR AU - Arroyo, Josu AU - Garay, Óscar J. AU - Mencía, José J. TI - Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 161 EP - 166 VL - 345 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.06.015/ DO - 10.1016/j.crma.2007.06.015 LA - en ID - CRMATH_2007__345_3_161_0 ER -
%0 Journal Article %A Arroyo, Josu %A Garay, Óscar J. %A Mencía, José J. %T Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$ %J Comptes Rendus. Mathématique %D 2007 %P 161-166 %V 345 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.06.015/ %R 10.1016/j.crma.2007.06.015 %G en %F CRMATH_2007__345_3_161_0
Arroyo, Josu; Garay, Óscar J.; Mencía, José J. Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$. Comptes Rendus. Mathématique, Tome 345 (2007) no. 3, pp. 161-166. doi : 10.1016/j.crma.2007.06.015. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.06.015/
[1] J. Arroyo, O.J. Garay, J.J. Mencía, Unit speed stationary points of the acceleration, Preprint
[2] Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres, Tohoku Math. J., Volume 51 (1999), pp. 177-192
[3] On the geometry of Riemannian cubic polynomials, Diferential Geom. Appl., Volume 15 (2001), pp. 107-135
[4] Dynamics of relativistic particle with Lagrangian dependent on acceleration, J. Math. Phys., Volume 6 (1989), pp. 465-473
[5] Cubic splines on curved spaces, IMA J. Math. Control Inform., Volume 12 (1995), pp. 399-410
[6] Null Riemannian cubics in tension, IMA J. Math. Control Inform., Volume 22 (2005), pp. 477-488
Cité par Sources :