Voir la notice de l'article provenant de la source Numdam
We study the flow map associated to the cubic, defocusing, Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in , where , the critical index, and perturbations in , where is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric optics: the creation of oscillation, and the ghost effect.
Nous étudions l'équation de Schrödinger cubique défocalisante en dimension d'espace au moins trois. Pour des données initiales de taille quelconque dans , , où est l'indice critique, nous considérons des perturbations dans , avec indépendant de s. On montre une instabilité dans des espaces de Sobolev d'ordre inférieur à s. La preuve repose sur une analyse de type optique géométrique en régime sur-critique.
Carles, Rémi 1
@article{CRMATH_2007__344_8_483_0, author = {Carles, R\'emi}, title = {On instability for the cubic nonlinear {Schr\"odinger} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--486}, publisher = {Elsevier}, volume = {344}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.03.006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.03.006/} }
TY - JOUR AU - Carles, Rémi TI - On instability for the cubic nonlinear Schrödinger equation JO - Comptes Rendus. Mathématique PY - 2007 SP - 483 EP - 486 VL - 344 IS - 8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.03.006/ DO - 10.1016/j.crma.2007.03.006 LA - en ID - CRMATH_2007__344_8_483_0 ER -
%0 Journal Article %A Carles, Rémi %T On instability for the cubic nonlinear Schrödinger equation %J Comptes Rendus. Mathématique %D 2007 %P 483-486 %V 344 %N 8 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.03.006/ %R 10.1016/j.crma.2007.03.006 %G en %F CRMATH_2007__344_8_483_0
Carles, Rémi. On instability for the cubic nonlinear Schrödinger equation. Comptes Rendus. Mathématique, Tome 344 (2007) no. 8, pp. 483-486. doi : 10.1016/j.crma.2007.03.006. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.03.006/
[1] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 2, pp. 255-301
[2] Geometric optics and instability for semi-classical Schrödinger equations, Arch. Ration. Mech. Anal., Volume 183 (2007) no. 3, pp. 525-553
[3] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. TMA, Volume 14 (1990), pp. 807-836
[4] M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. See also | arXiv
[5] Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., Volume 126 (1998) no. 2, pp. 523-530
[6] Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: examination by asymptotic analysis and numerical computation of the Boltzmann equation, Phys. Fluids, Volume 8 (1996) no. 2, pp. 628-638
Cité par Sources :