Numerical Analysis
A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis
[Un nouveau schéma volumes finis pour les problèmes de diffusion anisotrope : analyse de convergence]
Comptes Rendus. Mathématique, Tome 344 (2007) no. 6, pp. 403-406.

Voir la notice de l'article provenant de la source Numdam

We introduce here a new finite volume scheme which was developed for the discretization of anisotropic diffusion problems; the originality of this scheme lies in the fact that we are able to prove its convergence under very weak assumptions on the discretization mesh.

On introduit ici un nouveau schéma volumes finis, construit pour la discrétisation de problèmes de diffusion anisotrope sur des maillages généraux ; l'originalité de ce travail réside dans sa preuve de convergence, qui ne nécessite que des hypothèses faibles sur le maillage.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.01.024

Eymard, Robert 1 ; Gallouët, Thierry 2 ; Herbin, Raphaèle 2

1 Université de Marne-la-Vallée, 77454 Marne-la-Vallée cedex 2, France
2 Université de Provence, 39, rue Joliot-Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2007__344_6_403_0,
     author = {Eymard, Robert and Gallou\"et, Thierry and Herbin, Rapha\`ele},
     title = {A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {403--406},
     publisher = {Elsevier},
     volume = {344},
     number = {6},
     year = {2007},
     doi = {10.1016/j.crma.2007.01.024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.01.024/}
}
TY  - JOUR
AU  - Eymard, Robert
AU  - Gallouët, Thierry
AU  - Herbin, Raphaèle
TI  - A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 403
EP  - 406
VL  - 344
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.01.024/
DO  - 10.1016/j.crma.2007.01.024
LA  - en
ID  - CRMATH_2007__344_6_403_0
ER  - 
%0 Journal Article
%A Eymard, Robert
%A Gallouët, Thierry
%A Herbin, Raphaèle
%T A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis
%J Comptes Rendus. Mathématique
%D 2007
%P 403-406
%V 344
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.01.024/
%R 10.1016/j.crma.2007.01.024
%G en
%F CRMATH_2007__344_6_403_0
Eymard, Robert; Gallouët, Thierry; Herbin, Raphaèle. A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. Comptes Rendus. Mathématique, Tome 344 (2007) no. 6, pp. 403-406. doi : 10.1016/j.crma.2007.01.024. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2007.01.024/

[1] Coudière, Y.; Gallouët, T.; Herbin, R. Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations, M2AN Math. Model. Numer. Anal., Volume 35 (2001) no. 4, pp. 767-778

[2] Coudière, Y.; Vila, J.-P.; Villedieu, Ph. Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem, M2AN Math. Model. Numer. Anal., Volume 33 (1999) no. 3, pp. 493-516

[3] Domelevo, K.; Omnes, P. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Model. Numer. Anal., Volume 39 (2005) no. 6, pp. 1203-1249

[4] Eymard, R.; Gallouët, T. H-convergence and numerical schemes for elliptic equations, SIAM J. Numer. Anal., Volume 41 (2000) no. 2, pp. 539-562

[5] Eymard, R.; Gallouët, T.; Herbin, R. A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., Volume 26 (2006) no. 2, pp. 326-353

[6] Herbin, R. An error estimate for a finite volume scheme for a diffusion–convection problem on a triangular mesh, Numer. Methods Partial Differential Equations, Volume 11 (1995) no. 2, pp. 165-173

[7] Le Potier, C. Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 12, pp. 921-926

Cité par Sources :