Voir la notice de l'article provenant de la source Numdam
We generalize the work of M. Singer (1978) on the theory of closed ordered differential fields to the case of m-ODF, the theory of ordered fields equipped with m commuting derivations. We give an algebraic axiomatization of the model completion (denoted by m-CODF) of this theory and we can immediately deduce that m-CODF has quantifier elimination in the natural language of ordered Δ-rings.
Nous généralisons les travaux de M. Singer concernant la théorie des corps ordonnés différentiellement clos au cas des corps ordonnés munis de m dérivations commutant entre elles. Nous donnons une axiomatisation algébrique de la modèle-complétion de cette théorie et nous pouvons directement déduire que cette dernière admet l'élimination des quantificateurs dans le langage naturel des anneaux ordonnés différentiels.
Rivière, Cédric 1
@article{CRMATH_2006__343_3_151_0, author = {Rivi\`ere, C\'edric}, title = {The theory of closed ordered differential fields with \protect\emph{m} commuting derivations}, journal = {Comptes Rendus. Math\'ematique}, pages = {151--154}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.06.019/} }
TY - JOUR AU - Rivière, Cédric TI - The theory of closed ordered differential fields with m commuting derivations JO - Comptes Rendus. Mathématique PY - 2006 SP - 151 EP - 154 VL - 343 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.06.019/ DO - 10.1016/j.crma.2006.06.019 LA - en ID - CRMATH_2006__343_3_151_0 ER -
%0 Journal Article %A Rivière, Cédric %T The theory of closed ordered differential fields with m commuting derivations %J Comptes Rendus. Mathématique %D 2006 %P 151-154 %V 343 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.06.019/ %R 10.1016/j.crma.2006.06.019 %G en %F CRMATH_2006__343_3_151_0
Rivière, Cédric. The theory of closed ordered differential fields with m commuting derivations. Comptes Rendus. Mathématique, Tome 343 (2006) no. 3, pp. 151-154. doi : 10.1016/j.crma.2006.06.019. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.06.019/
[1] Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, vol. 54, Academic Press, 1973
[2] Saturated Model Theory, Benjamin, 1972
[3] The uniform companion for large differential fields of characteristic zero, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 3933-3951
[4] Bounds in the theory of polynomials rings over fields. A nonstandard approach, Invent. Math., Volume 76 (1984), pp. 77-91
Cité par Sources :