Voir la notice de l'article provenant de la source Numdam
In this Note, we deal with stationary nonlinear Schrödinger equations of the form
Dans cette Note, nous considérons des équations de Schrödinger non linéaires stationnaires du type
Bonheure, Denis 1 ; Van Schaftingen, Jean 1, 2
@article{CRMATH_2006__342_12_903_0, author = {Bonheure, Denis and Van Schaftingen, Jean}, title = {Nonlinear {Schr\"odinger} equations with potentials vanishing at infinity}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--908}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.04.011/} }
TY - JOUR AU - Bonheure, Denis AU - Van Schaftingen, Jean TI - Nonlinear Schrödinger equations with potentials vanishing at infinity JO - Comptes Rendus. Mathématique PY - 2006 SP - 903 EP - 908 VL - 342 IS - 12 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.04.011/ DO - 10.1016/j.crma.2006.04.011 LA - en ID - CRMATH_2006__342_12_903_0 ER -
%0 Journal Article %A Bonheure, Denis %A Van Schaftingen, Jean %T Nonlinear Schrödinger equations with potentials vanishing at infinity %J Comptes Rendus. Mathématique %D 2006 %P 903-908 %V 342 %N 12 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.04.011/ %R 10.1016/j.crma.2006.04.011 %G en %F CRMATH_2006__342_12_903_0
Bonheure, Denis; Van Schaftingen, Jean. Nonlinear Schrödinger equations with potentials vanishing at infinity. Comptes Rendus. Mathématique, Tome 342 (2006) no. 12, pp. 903-908. doi : 10.1016/j.crma.2006.04.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.04.011/
[1] Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., Volume 140 (1997), pp. 285-300
[2] Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., Volume 7 (2005), pp. 117-144
[3] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys., Volume 235 (2003), pp. 427-466
[4] A. Ambrosetti, A. Malchiodi, D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., submitted for publication
[5] Multiplicity results for some nonlinear singularly perturbed elliptic problems on , Arch. Rational Mech. Anal., Volume 159 (2001), pp. 253-271
[6] D. Bonheure, J. Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, preprint
[7] Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., Volume 165 (2002) no. 4, pp. 295-316
[8] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var., Volume 4 (1996), pp. 121-137
[9] Semi classical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997) no. 1, pp. 245-265
[10] Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., Volume 324 (2002) no. 1, pp. 1-32
[11] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., Volume 69 (1986), pp. 397-408
[12] On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., Volume 28 (1997) no. 3, pp. 633-655
Cité par Sources :