Voir la notice de l'article provenant de la source Numdam
We show that the quantized coordinate ring satisfies van den Bergh's analogue of Poincaré duality for Hochschild (co)homology with dualizing bimodule being , the A-bimodule which is A as k-vector space with right multiplication twisted by the modular automorphism σ of the Haar functional. This implies that , generalizing our previous result for .
Nous démontrons que l'anneau standard quantique des coordonnées satisfait l'analogue de van den Bergh de la dualité de Poincaré dans l'(co)homologie de Hochschild. Le bimodule de la dualité est , le A-bimodule qui est A comme un espace vectoriel, avec la multiplication à droite tordue par l'automorphisme modulaire σ de la fonctionnelle de Haar. Ceci implique , et généralise notre résultat précédent pour .
Hadfield, Tom 1 ; Krähmer, Ulrich 2
@article{CRMATH_2006__343_1_9_0, author = {Hadfield, Tom and Kr\"ahmer, Ulrich}, title = {On the {Hochschild} homology of quantum $ \mathit{SL}(N)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {9--13}, publisher = {Elsevier}, volume = {343}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2006.03.031}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.03.031/} }
TY - JOUR AU - Hadfield, Tom AU - Krähmer, Ulrich TI - On the Hochschild homology of quantum $ \mathit{SL}(N)$ JO - Comptes Rendus. Mathématique PY - 2006 SP - 9 EP - 13 VL - 343 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.03.031/ DO - 10.1016/j.crma.2006.03.031 LA - en ID - CRMATH_2006__343_1_9_0 ER -
%0 Journal Article %A Hadfield, Tom %A Krähmer, Ulrich %T On the Hochschild homology of quantum $ \mathit{SL}(N)$ %J Comptes Rendus. Mathématique %D 2006 %P 9-13 %V 343 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.03.031/ %R 10.1016/j.crma.2006.03.031 %G en %F CRMATH_2006__343_1_9_0
Hadfield, Tom; Krähmer, Ulrich. On the Hochschild homology of quantum $ \mathit{SL}(N)$. Comptes Rendus. Mathématique, Tome 343 (2006) no. 1, pp. 9-13. doi : 10.1016/j.crma.2006.03.031. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.03.031/
[1] Elementy matematiki. Algebra. Glava X. Gomologicheskaya algebra, Nauka, Moscow, 1987 (in Russian)
[2] Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras, 2006 | arXiv
[3] Homological Algebra, Princeton University Press, 1956
[4] Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[5] Hochschild duality, localization, and smash products, J. Algebra, Volume 284 (2005) no. 1, pp. 415-434
[6] Hochschild and cyclic homology of quantum groups, Comm. Math. Phys., Volume 140 (1991) no. 3, pp. 481-521
[7] Koszul algebras, Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, 1999, pp. 337-350
[8] Homological properties of quantized coordinate rings of semisimple groups, 2005 | arXiv
[9] T. Hadfield, Twisted cyclic homology of all Podleś quantum spheres, J. Geom. Physics (2006), in press
[10] Twisted homology of quantum , K-Theory, Volume 34 (2005) no. 4, pp. 327-360
[11] Differential forms on regular affine algebras, Trans. Amer. Math. Soc., Volume 102 (1962)
[12] Quantum Groups and their Primitive Ideals, Springer-Verlag, Berlin, 1995
[13] Quantum Groups and their Representations, Springer, 1997
[14] Differential calculi over quantum groups and twisted cyclic cocycles, J. Geom. Phys., Volume 44 (2003) no. 4, pp. 570-594
[15] The quantum coordinate ring of the special linear group, J. Pure Appl. Algebra, Volume 86 (1993), pp. 181-186
[16] Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, Volume 37 (1987) no. 4, pp. 191-205
[17] Koszul resolutions, Trans. Amer. Math. Soc., Volume 152 (1970), pp. 39-60
[18] Twisted Hochschild homology of quantum hyperplanes, K-Theory (2005)
[19] A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc., Volume 126 (1998) no. 5, pp. 1345-1348 Erratum Proc. Amer. Math. Soc., 130, 9, 2002, pp. 2809-2810 (electronic)
Cité par Sources :