Probability Theory
Relatively compact criteria for Hilbert valued random fields on abstract Wiener space
[Critères de compacité relative pour des champs définis sur des espaces de Wiener abstraits et à valeurs dans un espace de Hilbert]
Comptes Rendus. Mathématique, Tome 342 (2006) no. 6, pp. 437-440.

Voir la notice de l'article provenant de la source Numdam

In terms of the compact embedding theorems in finite dimensional Sobolev spaces, conditions are given under which Hilbert valued random fields on abstract Wiener space are relatively compact in some Lp-space.

Nous obtenons un nouveau critère pour qu'une famille de l'espace Lp(X,B), définie sur un espace de Wiener et à valeurs dans un espace de Banach B, soit compacte. La démonstration utilise l'approximation de dimension finie et l'hypercontractivité du semi-groupe d'Ornstein–Uhlenbeck. Notre résultat est différent d'un résultat récent de Bally–Saussereau dans le sens où nous travaillons dans Lp pour tout p>1 tandis que le résultat de Bally–Saussereau est limité à p=2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.01.004

Zhang, Xicheng 1

1 Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
@article{CRMATH_2006__342_6_437_0,
     author = {Zhang, Xicheng},
     title = {Relatively compact criteria for {Hilbert} valued random fields on abstract {Wiener} space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {437--440},
     publisher = {Elsevier},
     volume = {342},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.01.004/}
}
TY  - JOUR
AU  - Zhang, Xicheng
TI  - Relatively compact criteria for Hilbert valued random fields on abstract Wiener space
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 437
EP  - 440
VL  - 342
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.01.004/
DO  - 10.1016/j.crma.2006.01.004
LA  - en
ID  - CRMATH_2006__342_6_437_0
ER  - 
%0 Journal Article
%A Zhang, Xicheng
%T Relatively compact criteria for Hilbert valued random fields on abstract Wiener space
%J Comptes Rendus. Mathématique
%D 2006
%P 437-440
%V 342
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.01.004/
%R 10.1016/j.crma.2006.01.004
%G en
%F CRMATH_2006__342_6_437_0
Zhang, Xicheng. Relatively compact criteria for Hilbert valued random fields on abstract Wiener space. Comptes Rendus. Mathématique, Tome 342 (2006) no. 6, pp. 437-440. doi : 10.1016/j.crma.2006.01.004. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2006.01.004/

[1] Adams, R.A. Sobolev Spaces, Academic Press, New York, 1978

[2] Bally, V.; Saussereau, B. A relative compactness criterion in Wiener–Sobolev spaces and application to semi-linear stochastic PDEs, J. Funct. Anal., Volume 210 (2004) no. 2, pp. 465-515

[3] Da Prato, G.; Malliavin, P.; Nualart, D. Compact families of Wiener functionals, C. R. Acad. Sci. Paris, Sér. I, Volume 315 (1992), pp. 1287-1291

[4] Malliavin, P. Stochastic Analysis, Grundlehren Math. Wiss., Springer-Verlag, Berlin, 1997

[5] Pazy, A. Semi-Groups of Linear Operators and Applications, Springer-Verlag, Berlin, 1985

[6] Zhang, X. Relatively compact sets on abstract Wiener space, Acta Math. Sinica, Volume 21 (2005) no. 4, pp. 819-822

[7] X. Zhang, Relatively compact families of functionals on abstract Wiener space and applications, J. Func. Anal., in press

Cité par Sources :