Numerical Analysis/Calculus of Variations
A density result for the variation of a material with respect to small inclusions
[Un résultat sur la variation d'un matériau en fonction de petites inclusions]
Comptes Rendus. Mathématique, Tome 342 (2006) no. 5, pp. 353-358.

Voir la notice de l'article provenant de la source Numdam

We consider the family of materials obtained, via homogenization, by replacing a small portion, of size ɛ, of a fixed material by other materials. In a previous paper we have obtained a subset of the set of ‘derivatives’ of this family with respect to ɛ in ɛ=0. In the present Note we prove that this set is, in fact, dense. This result can be applied, for example, to obtain optimality conditions for composite materials.

On considère une famille de matériaux obtenus par homogénéisation consistant à remplacer une petite partie de matériau, de taille ɛ, par d'autres matériaux. Dans un article antérieur on a caractérisé un sous-ensemble de l'ensemble des « dérivées », par rapport à ɛ de cette famille, pour ɛ=0. Dans cette Note on démontre que ce sous-ensemble est en fait dense. Le résultat peut être appliqué, par exemple, à l'obtention des conditions d'optimalité pour des matériaux composites.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.12.021

Casado-Díaz, Juan 1 ; Couce-Calvo, Julio 1 ; Martín-Gómez, José Domingo 1

1 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/Tarfia s/n, 41012 Sevilla, Spain
@article{CRMATH_2006__342_5_353_0,
     author = {Casado-D{\'\i}az, Juan and Couce-Calvo, Julio and Mart{\'\i}n-G\'omez, Jos\'e Domingo},
     title = {A density result for the variation of a material with respect to small inclusions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {353--358},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.12.021/}
}
TY  - JOUR
AU  - Casado-Díaz, Juan
AU  - Couce-Calvo, Julio
AU  - Martín-Gómez, José Domingo
TI  - A density result for the variation of a material with respect to small inclusions
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 353
EP  - 358
VL  - 342
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.12.021/
DO  - 10.1016/j.crma.2005.12.021
LA  - en
ID  - CRMATH_2006__342_5_353_0
ER  - 
%0 Journal Article
%A Casado-Díaz, Juan
%A Couce-Calvo, Julio
%A Martín-Gómez, José Domingo
%T A density result for the variation of a material with respect to small inclusions
%J Comptes Rendus. Mathématique
%D 2006
%P 353-358
%V 342
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.12.021/
%R 10.1016/j.crma.2005.12.021
%G en
%F CRMATH_2006__342_5_353_0
Casado-Díaz, Juan; Couce-Calvo, Julio; Martín-Gómez, José Domingo. A density result for the variation of a material with respect to small inclusions. Comptes Rendus. Mathématique, Tome 342 (2006) no. 5, pp. 353-358. doi : 10.1016/j.crma.2005.12.021. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.12.021/

[1] Allaire, G. Shape Optimization by the Homogenization Method, Appl. Math. Sci., vol. 146, Springer-Verlag, New York, 2002

[2] Casado-Díaz, J.; Couce-Calvo, J.; Martín-Gómez, J.D. Optimality conditions for nonconvex multistate control problems in the coefficients, SIAM J. Control Optim., Volume 43 (2004) no. 1, pp. 216-239

[3] Cherkaev, A.V. Variational Methods for Structural Optimization, Appl. Math. Sci., vol. 140, Springer-Verlag, New York, 2000

[4] G. Dal Maso, R.V. Kohn, The local character of G-closure, Unpublished work

[5] Jikov, V.V.; Kozlov, S.M.; Oleinik, O.A. Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994

[6] Meyers, N.G. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 3 (1963) no. 17, pp. 189-206

[7] Murat, F.; Tartar, L. H-convergence (Cherkaev, A.; Kohn, R., eds.), Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1997, pp. 21-44

[8] Murat, F.; Tartar, L. Calculus of variations (Cherkaev, A.; Kohn, R., eds.), Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1997, pp. 139-173

[9] Pironneau, O. Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York, 1984

[10] Tartar, L. An Introduction to the homogenization method in optimal design, CIM/CIME, Summer School, Trôia, 1–6 June 1998 (Cellina, A.; Ornelas, A., eds.) (Lecture Notes in Math.), Volume vol. 1740, Springer-Verlag, Berlin (2000), pp. 47-156

Cité par Sources :