Voir la notice de l'article provenant de la source Numdam
We present two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. The proofs of the inequalities are based on some decompositions formulas of .
On présente deux nouvelles inégalités de type Poincaré–Friedrichs sur les espaces discontinus. La preuve des inégalités est basée sur des formules de décomposition orthogonale de .
Zaghdani, Abdelhamid 1 ; Daveau, Christian 1
@article{CRMATH_2006__342_1_29_0, author = {Zaghdani, Abdelhamid and Daveau, Christian}, title = {Two new discrete inequalities of {Poincar\'e{\textendash}Friedrichs} on discontinuous spaces for {Maxwell's} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {29--32}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2005.10.026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.10.026/} }
TY - JOUR AU - Zaghdani, Abdelhamid AU - Daveau, Christian TI - Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations JO - Comptes Rendus. Mathématique PY - 2006 SP - 29 EP - 32 VL - 342 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.10.026/ DO - 10.1016/j.crma.2005.10.026 LA - en ID - CRMATH_2006__342_1_29_0 ER -
%0 Journal Article %A Zaghdani, Abdelhamid %A Daveau, Christian %T Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations %J Comptes Rendus. Mathématique %D 2006 %P 29-32 %V 342 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.10.026/ %R 10.1016/j.crma.2005.10.026 %G en %F CRMATH_2006__342_1_29_0
Zaghdani, Abdelhamid; Daveau, Christian. Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. Comptes Rendus. Mathématique, Tome 342 (2006) no. 1, pp. 29-32. doi : 10.1016/j.crma.2005.10.026. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.10.026/
[1] Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986
[2] Mixed formulations for finite element analysis of magnetostatic and electrostatic problems, Japan J. Appl. Math, Volume 6 (1989), pp. 209-221
[3] Problèmes aux limites non homogènes et applications, Dunot, Paris, 1968
[4] S. Prudhomme, F. Pascal, J.T. Oden, A. Romkes, Review of a priori estimation for discontinuous Galerkin method, Tech. report 2000-27, TICAM, University of Texas at Austin, 2000
Cité par Sources :