Partial Differential Equations
Liouville-type results for solutions of Δu=|u|p1u on unbounded domains of RN
[Résultats de type Liouville pour des solutions de Δu=|u|p1u dans des domaines non-bornés de RN]
Comptes Rendus. Mathématique, Tome 341 (2005) no. 7, pp. 415-418.

Voir la notice de l'article provenant de la source Numdam

In this Note we study solutions, possibly unbounded and sign-changing, of the equation Δu=|u|p1u on unbounded domains of RN with N2 and p>1. We prove some Liouville-type results and a classification theorem for C2 solutions belonging to one of the following classes: stable solutions, finite Morse index solutions and solutions which are stable outside a compact set. We also extend, to smooth coercive epigraphs, the well-known results of Gidas and Spruck concerning non-negative solutions of the considered equation.

Cette Note porte sur l'étude des solutions, éventuellement non-bornées et de signe quelconque, de l'équation Δu=|u|p1u dans des domaines non-bornés de RN avec N2 et p>1. Nous démontrons des résultats de type Liouville ainsi que des théorèmes de classification pour les solutions régulières appartenant à une des classes suivantes : solutions stables, solutions d'indice de Morse fini et solutions stables à l'extérieur d'un compact. Nous étendons aussi, au cas d'un épigraphe coercif régulier, les célèbres résultats de Gidas et Spruck concernant les solutions positives de l'équation considérée.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.07.006

Farina, Alberto 1

1 LAMFA, CNRS UMR 6140, université de Picardie Jules Verne, faculté de mathématiques et d'informatique, 33, rue Saint-Leu, 80039 Amiens, France
@article{CRMATH_2005__341_7_415_0,
     author = {Farina, Alberto},
     title = {Liouville-type results for solutions of $ -\mathrm{\Delta }u={|u|}^{p-1}u$ on unbounded domains of $ {\mathbb{R}}^{N}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--418},
     publisher = {Elsevier},
     volume = {341},
     number = {7},
     year = {2005},
     doi = {10.1016/j.crma.2005.07.006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.006/}
}
TY  - JOUR
AU  - Farina, Alberto
TI  - Liouville-type results for solutions of $ -\mathrm{\Delta }u={|u|}^{p-1}u$ on unbounded domains of $ {\mathbb{R}}^{N}$
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 415
EP  - 418
VL  - 341
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.006/
DO  - 10.1016/j.crma.2005.07.006
LA  - en
ID  - CRMATH_2005__341_7_415_0
ER  - 
%0 Journal Article
%A Farina, Alberto
%T Liouville-type results for solutions of $ -\mathrm{\Delta }u={|u|}^{p-1}u$ on unbounded domains of $ {\mathbb{R}}^{N}$
%J Comptes Rendus. Mathématique
%D 2005
%P 415-418
%V 341
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.006/
%R 10.1016/j.crma.2005.07.006
%G en
%F CRMATH_2005__341_7_415_0
Farina, Alberto. Liouville-type results for solutions of $ -\mathrm{\Delta }u={|u|}^{p-1}u$ on unbounded domains of $ {\mathbb{R}}^{N}$. Comptes Rendus. Mathématique, Tome 341 (2005) no. 7, pp. 415-418. doi : 10.1016/j.crma.2005.07.006. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.006/

[1] Bahri, A.; Coron, J.-M. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988) no. 3, pp. 253-294

[2] Bahri, A.; Lions, P.-L. Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math., Volume 45 (1992) no. 9, pp. 1205-1215

[3] Brézis, H. Elliptic equations with limiting Sobolev exponents – the impact of topology, Frontiers of the Mathematical Sciences: 1985 (New York, 1985), Comm. Pure Appl. Math., Volume 39 (1986) no. Suppl. S, p. S17-S39

[4] Cabré, X.; Capella, A. On the stability of radial solutions of semilinear elliptic equations in all of RN, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004) no. 10, pp. 769-774

[5] Dancer, E.N. Some notes on the method of moving planes, Bull. Austral. Math. Soc., Volume 46 (1992) no. 3, pp. 425-434

[6] Esteban, M.J.; Lions, P.-L. Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, Volume 93 (1982/83) no. 1–2, pp. 1-14

[7] A. Farina, forthcoming

[8] Fowler, R.H. Further studies of Emden's and similar differential equations, Quart. J. Math. Oxford Ser. (2) (1931), pp. 259-288

[9] Gidas, B.; Spruck, J. A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, Volume 6 (1981) no. 8, pp. 883-901

[10] Gidas, B.; Spruck, J. Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981) no. 4, pp. 525-598

[11] Joseph, D.D.; Lundgren, T.S. Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., Volume 49 (1972/73), pp. 241-269

[12] Passaseo, D. Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J., Volume 92 (1998) no. 2, pp. 429-457

[13] Pohozaev, S.I. On the eigenfunctions of the equation Δu+λf(u)=0, Dokl. Akad. Nauk SSSR, Volume 165 (1965), pp. 36-39 (English translation in Soviet Math. Dokl., 6, 1965, pp. 1408-1411)

[14] Wang, X. On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., Volume 337 (1993) no. 2, pp. 549-590

[15] Ambrosio, L.; Cabré, X. Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi, J. Amer. Math. Soc., Volume 13 (2000) no. 4, pp. 725-739

[16] Caffarelli, L.A.; Gidas, B.; Spruck, J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., Volume 42 (1989) no. 3, pp. 271-297

Cité par Sources :