Voir la notice de l'article provenant de la source Numdam
We define a certain quotient of the étale fundamental group of a scheme which classifies étale coverings with bounded ramification along the boundary, and show the finiteness of the abelianization of this group for an arithmetic scheme.
Nous définissons un certain quotient du groupe fondamental étale d'un schéma qui classifie les revêtements étales à ramification bornée le long du bord, et démontrons la finitude de ce groupe rendu abélien pour un schéma arithmétique.
Hiranouchi, Toshiro 1
@article{CRMATH_2005__341_4_207_0, author = {Hiranouchi, Toshiro}, title = {Finiteness of {Abelian} fundamental groups with restricted ramification}, journal = {Comptes Rendus. Math\'ematique}, pages = {207--210}, publisher = {Elsevier}, volume = {341}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2005.07.001}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.001/} }
TY - JOUR AU - Hiranouchi, Toshiro TI - Finiteness of Abelian fundamental groups with restricted ramification JO - Comptes Rendus. Mathématique PY - 2005 SP - 207 EP - 210 VL - 341 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.001/ DO - 10.1016/j.crma.2005.07.001 LA - en ID - CRMATH_2005__341_4_207_0 ER -
%0 Journal Article %A Hiranouchi, Toshiro %T Finiteness of Abelian fundamental groups with restricted ramification %J Comptes Rendus. Mathématique %D 2005 %P 207-210 %V 341 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.001/ %R 10.1016/j.crma.2005.07.001 %G en %F CRMATH_2005__341_4_207_0
Hiranouchi, Toshiro. Finiteness of Abelian fundamental groups with restricted ramification. Comptes Rendus. Mathématique, Tome 341 (2005) no. 4, pp. 207-210. doi : 10.1016/j.crma.2005.07.001. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.07.001/
[1] Ramification of local fields with imperfect residue fields, Amer. J. Math., Volume 124 (2002) no. 5, pp. 879-920
[2] Eliminating wild ramification, Invent. Math., Volume 19 (1973), pp. 235-249
[3] Revêtements étales et groupe fondamental (SGA 1), Séminaire de Géométrie Algébrique du Bois-Marie 1960–1961, Lecture Notes in Math., vol. 224, Springer-Verlag, Berlin, 1971
[4] The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Lecture Notes in Math., vol. 208, Springer-Verlag, Berlin, 1971
[5] On -extensions of algebraic number fields, Ann. of Math. (2), Volume 98 (1973), pp. 246-326
[6] Finiteness theorems in geometric class field theory, Enseign. Math. (2), Volume 27 (1981) no. 3–4, pp. 285-319 (with an appendix by Kenneth A. Ribet)
[7] Tame coverings of arithmetic schemes, Math. Ann., Volume 322 (2002) no. 1, pp. 1-18
[8] Corps locaux, Publications de l'Université de Nancago, vol. VIII, Hermann, Paris, 1968
[9] p-Divisible groups, Proc. Conf. Local Fields, Driebergen, 1966, Springer, Berlin, 1967, pp. 158-183
Cité par Sources :