Differential Geometry/Dynamical Systems
On Ishii's equation
[Sur l'équation d'Ishii]
Comptes Rendus. Mathématique, Tome 341 (2005) no. 2, pp. 107-111.

Voir la notice de l'article provenant de la source Numdam

We will study the dynamics of Ishii's equation using its Hamilton–Poisson formulation.

On va étudier la dynamique de l'équation de Ishii en utilisant une réalisation Hamilton–Poisson de cette équation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.06.010

Birtea, Petre 1 ; Puta, Mircea 1

1 West University of Timişoara, Blvd. V. Parvan 4, Timişoara 300223, Timis, Romania
@article{CRMATH_2005__341_2_107_0,
     author = {Birtea, Petre and Puta, Mircea},
     title = {On {Ishii's} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {107--111},
     publisher = {Elsevier},
     volume = {341},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crma.2005.06.010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.010/}
}
TY  - JOUR
AU  - Birtea, Petre
AU  - Puta, Mircea
TI  - On Ishii's equation
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 107
EP  - 111
VL  - 341
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.010/
DO  - 10.1016/j.crma.2005.06.010
LA  - en
ID  - CRMATH_2005__341_2_107_0
ER  - 
%0 Journal Article
%A Birtea, Petre
%A Puta, Mircea
%T On Ishii's equation
%J Comptes Rendus. Mathématique
%D 2005
%P 107-111
%V 341
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.010/
%R 10.1016/j.crma.2005.06.010
%G en
%F CRMATH_2005__341_2_107_0
Birtea, Petre; Puta, Mircea. On Ishii's equation. Comptes Rendus. Mathématique, Tome 341 (2005) no. 2, pp. 107-111. doi : 10.1016/j.crma.2005.06.010. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.010/

[1] Goriely, A. Integrability and Nonintegrability of Dynamical System, Adv. Ser. Nonlinear Dynam., vol. 19, World Scientific, 2001

[2] Ishii, M. Painleve property and algebraic integrability of single variable ordinary differential equations with dominants, Progr. Theor. Phys., Volume 84 (1990), pp. 386-391

[3] Lawden, D.F. Elliptic Functions and Applications, Appl. Math. Sci., vol. 80, Springer, 1989

[4] Libermann, P.; Marle, C.-M. Symplectic Geometry and Analytical Mechanics, Reidel, 1987

Cité par Sources :