Voir la notice de l'article provenant de la source Numdam
We will study the dynamics of Ishii's equation using its Hamilton–Poisson formulation.
On va étudier la dynamique de l'équation de Ishii en utilisant une réalisation Hamilton–Poisson de cette équation.
Birtea, Petre 1 ; Puta, Mircea 1
@article{CRMATH_2005__341_2_107_0, author = {Birtea, Petre and Puta, Mircea}, title = {On {Ishii's} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {107--111}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.010/} }
TY - JOUR AU - Birtea, Petre AU - Puta, Mircea TI - On Ishii's equation JO - Comptes Rendus. Mathématique PY - 2005 SP - 107 EP - 111 VL - 341 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.010/ DO - 10.1016/j.crma.2005.06.010 LA - en ID - CRMATH_2005__341_2_107_0 ER -
Birtea, Petre; Puta, Mircea. On Ishii's equation. Comptes Rendus. Mathématique, Tome 341 (2005) no. 2, pp. 107-111. doi : 10.1016/j.crma.2005.06.010. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.010/
[1] Integrability and Nonintegrability of Dynamical System, Adv. Ser. Nonlinear Dynam., vol. 19, World Scientific, 2001
[2] Painleve property and algebraic integrability of single variable ordinary differential equations with dominants, Progr. Theor. Phys., Volume 84 (1990), pp. 386-391
[3] Elliptic Functions and Applications, Appl. Math. Sci., vol. 80, Springer, 1989
[4] Symplectic Geometry and Analytical Mechanics, Reidel, 1987
Cité par Sources :