Voir la notice de l'article provenant de la source Numdam
Let be an integer. In terms of combinatorics on words we describe all irrational numbers with the property that the fractional parts , , all belong to a semi-open or an open interval of length . The length of such an interval cannot be smaller, that is, for irrational ξ, the fractional parts , , cannot all belong to an interval of length smaller than .
Soit un entier. Au moyen de résultats de la combinatoire des mots, nous caractérisons l'ensemble des nombres réels tels que les parties fractionnaires , , appartiennent toutes à un intervalle semi-ouvert ou ouvert de longueur . La longueur d'un tel intervalle ne peut pas être plus petite, c'est-à-dire, quel que soit le nombre irrationnel ξ, aucun intervalle de longueur strictement inférieure à ne contient toutes les parties fractionnaires , .
Bugeaud, Yann 1 ; Dubickas, Artūras 2
@article{CRMATH_2005__341_2_69_0, author = {Bugeaud, Yann and Dubickas, Art\={u}ras}, title = {Fractional parts of powers and {Sturmian} words}, journal = {Comptes Rendus. Math\'ematique}, pages = {69--74}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.007}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.007/} }
TY - JOUR AU - Bugeaud, Yann AU - Dubickas, Artūras TI - Fractional parts of powers and Sturmian words JO - Comptes Rendus. Mathématique PY - 2005 SP - 69 EP - 74 VL - 341 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.007/ DO - 10.1016/j.crma.2005.06.007 LA - en ID - CRMATH_2005__341_2_69_0 ER -
%0 Journal Article %A Bugeaud, Yann %A Dubickas, Artūras %T Fractional parts of powers and Sturmian words %J Comptes Rendus. Mathématique %D 2005 %P 69-74 %V 341 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.007/ %R 10.1016/j.crma.2005.06.007 %G en %F CRMATH_2005__341_2_69_0
Bugeaud, Yann; Dubickas, Artūras. Fractional parts of powers and Sturmian words. Comptes Rendus. Mathématique, Tome 341 (2005) no. 2, pp. 69-74. doi : 10.1016/j.crma.2005.06.007. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.06.007/
[1] S. Akiyama, Ch. Frougny, J. Sakarovitch, On number representation in a rational base, submitted for publication
[2] Combinatorics on words – a tutorial, Bull. EATCS, Volume 79 (2003), pp. 178-228
[3] Linear mod one transformations and the distribution of fractional parts , Acta Arith., Volume 114 (2004), pp. 301-311
[4] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc., in press
[5] A. Dubickas, On the distance from a rational power to the nearest integer, submitted for publication
[6] A. Dubickas, Arithmetical properties of linear recurrent sequences, submitted for publication
[7] A. Dubickas, A. Novikas, Integer parts of powers of rational numbers, Math. Z., in press
[8] Transcendence of numbers with a low complexity expansion, J. Number Theory, Volume 67 (1997), pp. 146-161
[9] On the range of fractional parts , Acta Arith., Volume 70 (1995), pp. 125-147
[10] Algebraic Combinatorics on Words, Encyclopedia Math. Appl., vol. 90, Cambridge University Press, Cambridge, 2002
[11] An unsolved problem on the powers of , J. Austral. Math. Soc., Volume 8 (1968), pp. 313-321
[12] Symbolic dynamics II: Sturmian sequences, Amer. J. Math., Volume 62 (1940), pp. 1-42
[13] A. Schinzel, On the reduced length of a polynomial with real coefficients, submitted for publication
[14] T. Zaimi, An arithmetical property of powers of Salem numbers, submitted for publication
Cité par Sources :
⁎ The research of the first named author was supported by the Austrian Science Foundation FWF, grant M822-N12. The research of the second named author was partially supported by the Lithuanian State Science and Studies Foundation.