Voir la notice de l'article provenant de la source Numdam
We prove new existence results of fixed points for upper semicontinuous multi-valued maps with not necessarily convex values. The definition domains are assumed to have the simplicial approximation property.
Nous montrons des nouveaux résultats d'existence de points fixes pour les applications multivoques à images non nécessairement convexes. Les ensembles de définition sont supposés avoir la propriété d'approximation simplicial.
Askoura, Youcef 1 ; Godet-Thobie, Christiane 1
@article{CRMATH_2005__340_11_815_0, author = {Askoura, Youcef and Godet-Thobie, Christiane}, title = {Fixed point theorem in subsets of topological vector spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {815--818}, publisher = {Elsevier}, volume = {340}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.04.030}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/} }
TY - JOUR AU - Askoura, Youcef AU - Godet-Thobie, Christiane TI - Fixed point theorem in subsets of topological vector spaces JO - Comptes Rendus. Mathématique PY - 2005 SP - 815 EP - 818 VL - 340 IS - 11 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/ DO - 10.1016/j.crma.2005.04.030 LA - en ID - CRMATH_2005__340_11_815_0 ER -
%0 Journal Article %A Askoura, Youcef %A Godet-Thobie, Christiane %T Fixed point theorem in subsets of topological vector spaces %J Comptes Rendus. Mathématique %D 2005 %P 815-818 %V 340 %N 11 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/ %R 10.1016/j.crma.2005.04.030 %G en %F CRMATH_2005__340_11_815_0
Askoura, Youcef; Godet-Thobie, Christiane. Fixed point theorem in subsets of topological vector spaces. Comptes Rendus. Mathématique, Tome 340 (2005) no. 11, pp. 815-818. doi : 10.1016/j.crma.2005.04.030. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/
[1] Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic, The Netherlands, 1999
[2] Contractibility and generalized convexity, J. Math. Anal. App., Volume 156 (1991), pp. 341-357
[3] An F-Space Sampler, Cambridge University Press, Cambridge, 1984
[4] Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann., Volume 141 (1960), pp. 281-285
[5] The fixed point property for weakly admissible compact convex sets: searching for a solution to Schauder's conjecture, Topol. Appl., Volume 68 (1996), pp. 1-12
[6] No Roberts space is a counter example to the Schauder's conjecture, Topology, Volume 33 (1994), pp. 371-378
[7] The Kakutani fixed point theorem for Roberts spaces, Topol. Appl., Volume 123 (2002), pp. 461-470
[8] A compact convex set with no extreme points, Studia Math., Volume 60 (1977), pp. 255-266
Cité par Sources :