Functional Analysis
Fixed point theorem in subsets of topological vector spaces
[Théorème de point fixe dans les sous ensembles d'espaces vectoriels topologiques]
Comptes Rendus. Mathématique, Tome 340 (2005) no. 11, pp. 815-818.

Voir la notice de l'article provenant de la source Numdam

We prove new existence results of fixed points for upper semicontinuous multi-valued maps with not necessarily convex values. The definition domains are assumed to have the simplicial approximation property.

Nous montrons des nouveaux résultats d'existence de points fixes pour les applications multivoques à images non nécessairement convexes. Les ensembles de définition sont supposés avoir la propriété d'approximation simplicial.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.04.030

Askoura, Youcef 1 ; Godet-Thobie, Christiane 1

1 Université de Bretagne occidentale, UFR sciences et techniques, laboratoire de mathématiques–CNRS–UMR 6205, 6, avenue Victor Le Gorgeu, CS 93837, 29283 Brest cedex 3, France
@article{CRMATH_2005__340_11_815_0,
     author = {Askoura, Youcef and Godet-Thobie, Christiane},
     title = {Fixed point theorem in subsets of topological vector spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {815--818},
     publisher = {Elsevier},
     volume = {340},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.04.030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/}
}
TY  - JOUR
AU  - Askoura, Youcef
AU  - Godet-Thobie, Christiane
TI  - Fixed point theorem in subsets of topological vector spaces
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 815
EP  - 818
VL  - 340
IS  - 11
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/
DO  - 10.1016/j.crma.2005.04.030
LA  - en
ID  - CRMATH_2005__340_11_815_0
ER  - 
%0 Journal Article
%A Askoura, Youcef
%A Godet-Thobie, Christiane
%T Fixed point theorem in subsets of topological vector spaces
%J Comptes Rendus. Mathématique
%D 2005
%P 815-818
%V 340
%N 11
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/
%R 10.1016/j.crma.2005.04.030
%G en
%F CRMATH_2005__340_11_815_0
Askoura, Youcef; Godet-Thobie, Christiane. Fixed point theorem in subsets of topological vector spaces. Comptes Rendus. Mathématique, Tome 340 (2005) no. 11, pp. 815-818. doi : 10.1016/j.crma.2005.04.030. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.04.030/

[1] Gorniewicz, L. Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic, The Netherlands, 1999

[2] Horvath, C.D. Contractibility and generalized convexity, J. Math. Anal. App., Volume 156 (1991), pp. 341-357

[3] Kalton, N.J.; Peck, N.T.; Roberts, J.W. An F-Space Sampler, Cambridge University Press, Cambridge, 1984

[4] Klee, V. Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann., Volume 141 (1960), pp. 281-285

[5] Nhu, N.T. The fixed point property for weakly admissible compact convex sets: searching for a solution to Schauder's conjecture, Topol. Appl., Volume 68 (1996), pp. 1-12

[6] Nhu, N.T.; Tri, L.H. No Roberts space is a counter example to the Schauder's conjecture, Topology, Volume 33 (1994), pp. 371-378

[7] Okon, T. The Kakutani fixed point theorem for Roberts spaces, Topol. Appl., Volume 123 (2002), pp. 461-470

[8] Roberts, J.W. A compact convex set with no extreme points, Studia Math., Volume 60 (1977), pp. 255-266

Cité par Sources :