Voir la notice de l'article provenant de la source Numdam
Nous considérons certains résultats de généricité au sens des catégories de Baire, et étudions s'ils peuvent ou non s'étendre aux cadres fournis par la prévalence, et par les ensembles HP-résiduels.
We consider some classical genericity results in the sense of Baire categories, and we study whether they can be extended to the settings supplied by prevalence and by HP-residual sets.
Fraysse, Aurélia 1 ; Jaffard, Stéphane 1 ; Kahane, Jean-Pierre 2
@article{CRMATH_2005__340_9_645_0, author = {Fraysse, Aur\'elia and Jaffard, St\'ephane and Kahane, Jean-Pierre}, title = {Quelques propri\'et\'es g\'en\'eriques en analyse}, journal = {Comptes Rendus. Math\'ematique}, pages = {645--651}, publisher = {Elsevier}, volume = {340}, number = {9}, year = {2005}, doi = {10.1016/j.crma.2005.03.029}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.03.029/} }
TY - JOUR AU - Fraysse, Aurélia AU - Jaffard, Stéphane AU - Kahane, Jean-Pierre TI - Quelques propriétés génériques en analyse JO - Comptes Rendus. Mathématique PY - 2005 SP - 645 EP - 651 VL - 340 IS - 9 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.03.029/ DO - 10.1016/j.crma.2005.03.029 LA - fr ID - CRMATH_2005__340_9_645_0 ER -
%0 Journal Article %A Fraysse, Aurélia %A Jaffard, Stéphane %A Kahane, Jean-Pierre %T Quelques propriétés génériques en analyse %J Comptes Rendus. Mathématique %D 2005 %P 645-651 %V 340 %N 9 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.03.029/ %R 10.1016/j.crma.2005.03.029 %G fr %F CRMATH_2005__340_9_645_0
Fraysse, Aurélia; Jaffard, Stéphane; Kahane, Jean-Pierre. Quelques propriétés génériques en analyse. Comptes Rendus. Mathématique, Tome 340 (2005) no. 9, pp. 645-651. doi : 10.1016/j.crma.2005.03.029. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.03.029/
[1] On sets of Haar measure zero in Abelian Polish groups, Israel J. Math., Volume 13 (1972), pp. 255-260
[2] A. Fraysse, Résultats de généricité en analyse multifractale, Thèse de l'Université Paris 12, 2005
[3] A. Fraysse, A prevalent approach to the Parisi–Frisch conjecture, prépublication, 2004
[4] A. Fraysse, S. Jaffard, How smooth is almost every function in a Sobolev space ?, Rev. Mat. Iberoamericana, in press
[5] A. Fraysse, S. Jaffard, The Sobolev embeddings are usually sharp, prépublication, 2005
[6] The prevalence of continuous nowhere differentiable function, Proc. Amer. Math. Soc., Volume 122 (1994) no. 3, pp. 711-717
[7] Prevalence: a translation invariant “almost every” on infinite dimensional spaces, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 217-238
[8] On the Frisch–Parisi conjecture, J. Math. Pures Appl., Volume 79 (2000), pp. 525-552
[9] J.-P. Kahane, Propriétés prévalentes versus génériques des images continues, prépublication, 2005
[10] A functional method for linear sets, Israel J. Math., Volume 5 (1967), pp. 185-187
[11] Porous sets that are Haar null, and nowhere approximately differentiable functions, Proc. Amer. Math. Soc., Volume 129 (2000) no. 5, pp. 1403-1408
[12] Measure and Category, Springer, 1971
[13] Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 219-238
Cité par Sources :