Automation (theoretical)
Linear systems subject to input saturation and time delay: Global asymptotic and Lp-stabilization
[Des systèmes linéaires saturés et retardés : stabilisation asymptotique globale et stabilisation-Lp]
Comptes Rendus. Mathématique, Tome 340 (2005) no. 9, pp. 703-708 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

This Note deals with two problems on stabilization of linear systems by static feedbacks which are bounded and time-delayed, namely global asymptotic stabilization and finite gain Lp-stabilization, p[1,]. Regarding the first issue, we provide, under standard necessary conditions, two types of solutions for arbitrary small bound on the control and large (constant) delay. The first solution is based on the knowledge of a static stabilizing feedback in the zero-delay case and the second solution is of nested saturation type, which extends results of Mazenc et al. [IEEE Trans. Automat. Contr. 48 (1) (2003) 57–63]. For the finite-gain Lp-stabilization issue, we assume that the system is neutrally stable. We show the existence of a linear feedback such that, for arbitrary small bound on the control and large (constant) delay, finite gain Lp-stability holds with respect to every Lp-norm, p[1,]. Moreover, the corresponding Lp-gain is delay-independent.

Dans cette Note on traite deux problèmes de stabilisation de systèmes linéaires par des feedbacks statiques retardés et bornés : la stabilisation asymptotique globale et la stabilisation-Lp avec gain fini. Pour le premier problème, sous les conditions nécessaires standard, on fournit deux solutions, avec une borne d'amplitude arbitrairement petite sur la commande et pour tout retard. La première solution utilise l'existance d'un feedback stabilisant pour le système sans retard. La seconde est de type saturation emboîtée, ce qui généralise les resultats de Mazenc et al. [IEEE Trans. Automat. Contr. 48 (1) (2003) 57–63]. Pour la stabilisation-Lp, le système est supposé stable. On donne un feedback linéaire qui assure la stabilité-Lp en respectant toute Lp-norme, p[1,], pour tout retard et toute borne d'amplitude assez petite de la commande. le Lp-gain correspendant est indépendant du retard h>0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.03.010

Yakoubi, Karim 1 ; Chitour, Yacine 1

1 Laboratoire des signaux et systèmes, université Paris-sud, CNRS, Supélec, 91192 Gif-sur-Yvette cedex, France
@article{CRMATH_2005__340_9_703_0,
     author = {Yakoubi, Karim and Chitour, Yacine},
     title = {Linear systems subject to input saturation and time delay: {Global} asymptotic and $ {L}^{p}$-stabilization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {703--708},
     year = {2005},
     publisher = {Elsevier},
     volume = {340},
     number = {9},
     doi = {10.1016/j.crma.2005.03.010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.03.010/}
}
TY  - JOUR
AU  - Yakoubi, Karim
AU  - Chitour, Yacine
TI  - Linear systems subject to input saturation and time delay: Global asymptotic and $ {L}^{p}$-stabilization
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 703
EP  - 708
VL  - 340
IS  - 9
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.03.010/
DO  - 10.1016/j.crma.2005.03.010
LA  - en
ID  - CRMATH_2005__340_9_703_0
ER  - 
%0 Journal Article
%A Yakoubi, Karim
%A Chitour, Yacine
%T Linear systems subject to input saturation and time delay: Global asymptotic and $ {L}^{p}$-stabilization
%J Comptes Rendus. Mathématique
%D 2005
%P 703-708
%V 340
%N 9
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.03.010/
%R 10.1016/j.crma.2005.03.010
%G en
%F CRMATH_2005__340_9_703_0
Yakoubi, Karim; Chitour, Yacine. Linear systems subject to input saturation and time delay: Global asymptotic and $ {L}^{p}$-stabilization. Comptes Rendus. Mathématique, Tome 340 (2005) no. 9, pp. 703-708. doi: 10.1016/j.crma.2005.03.010

Cité par Sources :