Differential Geometry
Closed hypersurfaces of S4(1) with constant mean curvature and zero Gauß–Kronecker curvature
[Hypersurfaces fermées de S4(1) à courbure moyenne constante et à courbure de Gauß–Kronecker nulle]
Comptes Rendus. Mathématique, Tome 340 (2005) no. 6, pp. 437-440.

Voir la notice de l'article provenant de la source Numdam

We consider a closed hypersurface M3S4(1) with identically zero Gauß–Kronecker curvature. We prove that if M3 has constant mean curvature H, then M3 is minimal, i.e., H=0. This result extends Ramanathan's classification (Math. Z. 205 (1990) 645–658) result of closed minimal hypersurfaces of S4(1) with vanishing Gauß–Kronecker curvature.

Nous considérons une hypersurface fermée (compacte et sans bord) M3S4(1) à courbure de Gauß–Kronecker identiquement nulle. Nous prouvons que si la courbure moyenne H de M3 est constante, alors l'hypersurface M3 est necéssairement minimale, c.à.d, H=0. Ce résultat généralise celui obtenu dans l'article de Ramanathan (Math. Z. 205 (1990) 645–658) concernant les hypersurfaces fermées minimales à courbure de Gauß–Kronecker identiquement nulle dans S4(1).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.01.005

Lusala, Tsasa 1 ; Gomes de Oliveira, André 1

1 Instituto de Matemática e Estatística (IME), Universidade de São Paulo (USP), Rua do Matão, 1010, Cidade Universitária, CEP 05508-090 São Paulo – SP, Brazil
@article{CRMATH_2005__340_6_437_0,
     author = {Lusala, Tsasa and Gomes de Oliveira, Andr\'e},
     title = {Closed hypersurfaces of $ {\mathbb{S}}^{4}(1)$ with constant mean curvature and zero {Gau{\ss}{\textendash}Kronecker} curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {437--440},
     publisher = {Elsevier},
     volume = {340},
     number = {6},
     year = {2005},
     doi = {10.1016/j.crma.2005.01.005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.01.005/}
}
TY  - JOUR
AU  - Lusala, Tsasa
AU  - Gomes de Oliveira, André
TI  - Closed hypersurfaces of $ {\mathbb{S}}^{4}(1)$ with constant mean curvature and zero Gauß–Kronecker curvature
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 437
EP  - 440
VL  - 340
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.01.005/
DO  - 10.1016/j.crma.2005.01.005
LA  - en
ID  - CRMATH_2005__340_6_437_0
ER  - 
%0 Journal Article
%A Lusala, Tsasa
%A Gomes de Oliveira, André
%T Closed hypersurfaces of $ {\mathbb{S}}^{4}(1)$ with constant mean curvature and zero Gauß–Kronecker curvature
%J Comptes Rendus. Mathématique
%D 2005
%P 437-440
%V 340
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.01.005/
%R 10.1016/j.crma.2005.01.005
%G en
%F CRMATH_2005__340_6_437_0
Lusala, Tsasa; Gomes de Oliveira, André. Closed hypersurfaces of $ {\mathbb{S}}^{4}(1)$ with constant mean curvature and zero Gauß–Kronecker curvature. Comptes Rendus. Mathématique, Tome 340 (2005) no. 6, pp. 437-440. doi : 10.1016/j.crma.2005.01.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2005.01.005/

[1] de Almeida, S.; Brito, F. Minimal hypersurfaces of S4 with constant Gauß–Kronecker curvature, Math. Z., Volume 195 (1987), pp. 99-107

[2] de Almeida, S.; Brito, F. Closed hypersurfaces with two constant curvatures, Ann. Fac. Sc. Toulouse Math. (4), Volume 6 (1997), pp. 187-202

[3] S. de Almeida, F. Brito, A. de Sousa, Hypersurfaces of S4 with non-zero constant Gauss–Kronecker curvature, Preprint

[4] Brito, F.; Liu, H.L.; Simon, U.; Wang, C.P. Hypersurfaces in a space forms with some constant curvature functions (Defever, F. et al., eds.), Geometry and Topology of Submanifolds, vol. IX, World Scientific, Singapore, 1999, pp. 48-63

[5] Chang, S. A closed hypersurface with constant scalar curvature and constant mean curvature in S4 is isoparametric, Commun. Anal. Geom., Volume 1 (1993), pp. 71-100

[6] Chang, S. On closed hypersurfaces of constant scalar curvatures and mean curvatures in Sn+1, Pacific J. Math., Volume 165 (1994), pp. 67-76

[7] Cheng, Q.-M. Complete hypersurfaces in a 4-dimensional unit sphere with constant mean curvature, Yokohama Math. J., Volume 29 (1992), pp. 125-139

[8] Peng, C.K.; Terng, C.L. Minimal hypersurfaces of spheres with constant scalar curvature (Bombieri, E., ed.), Seminar on Minimal Submanifolds, Ann. of Math. Stud., vol. 103, Princeton University Press, Princeton, NY, 1983, pp. 179-198

[9] Peng, C.K.; Terng, C.L. The scalar curvature of minimal hypersurfaces in spheres, Ann. Math., Volume 266 (1983), pp. 62-105

[10] Ramanathan, J. Minimal hypersurfaces in S4 with vanishing Gauss–Kronecker curvature, Math. Z., Volume 205 (1990), pp. 645-658

Cité par Sources :