Probability Theory
Invariant measures of stochastic partial differential equations and conditioned diffusions
[Mesures invariantes d'équations aux dérivées partielles stochastiques et diffusions conditionées]
Comptes Rendus. Mathématique, Tome 340 (2005) no. 4, pp. 305-308.

Voir la notice de l'article provenant de la source Numdam

This work establishes and exploits a connection between the invariant measure of stochastic partial differential equations (SPDEs) and the law of bridge processes. Namely, it is shown that the invariant measure of ut=uxx+f(u)+2ɛη(x,t), where η(x,t) is a space–time white-noise, is identical to the law of the bridge process associated to dU=a(U)dx+ɛdW(x), provided that a and f are related by ɛa(u)+2a(u)a(u)=2f(u), uR. Some consequences of this connection are investigated, including the existence and properties of the invariant measure for the SPDE on the line, xR.

On montre et exploite une connection entre la mesure invariante d'équations aux dérivées partielles stochastiques et les lois de processus ponts. En l'occurence, on montre que la mesure invariante de ut=uxx+f(u)+2ɛη(x,t), où η(x,t) est un bruit blanc spatio-temporel, est la même que la loi du processus pont associé à dU=a(U)dx+ɛdW(x), pourvu que a et f soient reliés comme ɛa(u)+2a(u)a(u)=2f(u), uR. Quelques conséquences de cette connection sont étudiées, comme l'existence et les propriétés d'une mesure invariante de l'équations aux dérivées partielle stochastique sur la ligne, xR.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.12.025

Reznikoff, Maria G. 1 ; Vanden-Eijnden, Eric 2

1 Institute for Applied Mathematics, University of Bonn, Wegelerstraße 10, 53115 Bonn, Germany
2 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
@article{CRMATH_2005__340_4_305_0,
     author = {Reznikoff, Maria G. and Vanden-Eijnden, Eric},
     title = {Invariant measures of stochastic partial differential equations and conditioned diffusions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {305--308},
     publisher = {Elsevier},
     volume = {340},
     number = {4},
     year = {2005},
     doi = {10.1016/j.crma.2004.12.025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.12.025/}
}
TY  - JOUR
AU  - Reznikoff, Maria G.
AU  - Vanden-Eijnden, Eric
TI  - Invariant measures of stochastic partial differential equations and conditioned diffusions
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 305
EP  - 308
VL  - 340
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.12.025/
DO  - 10.1016/j.crma.2004.12.025
LA  - en
ID  - CRMATH_2005__340_4_305_0
ER  - 
%0 Journal Article
%A Reznikoff, Maria G.
%A Vanden-Eijnden, Eric
%T Invariant measures of stochastic partial differential equations and conditioned diffusions
%J Comptes Rendus. Mathématique
%D 2005
%P 305-308
%V 340
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.12.025/
%R 10.1016/j.crma.2004.12.025
%G en
%F CRMATH_2005__340_4_305_0
Reznikoff, Maria G.; Vanden-Eijnden, Eric. Invariant measures of stochastic partial differential equations and conditioned diffusions. Comptes Rendus. Mathématique, Tome 340 (2005) no. 4, pp. 305-308. doi : 10.1016/j.crma.2004.12.025. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.12.025/

[1] Faris, W.G.; Jona-Lasinio, G. Large fluctuations for a nonlinear heat equation with noise, J. Phys. A, Volume 15 (1982), pp. 3025-3055

[2] Freidlin, M.I.; Wentzell, A.D. Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1998

[3] Marcus, R. Monotone parabolic Itô equations, J. Funct. Anal., Volume 29 (1978), pp. 275-286

[4] Pardoux, E. Stochastic partial differential equations, a review, Bull. Sci. Math., Volume 117 (1993), pp. 29-47

[5] Pinsky, R.G. Positive Harmonic Functions and Diffusion, Cambridge University Press, Cambridge, 1995

[6] Reed, M.; Simon, B. Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1972

Cité par Sources :