Voir la notice de l'article provenant de la source Numdam
We generalize Hartman's linearization theorem for local contractions and explain how to simplify its proof.
Nous généralisons le théorème de linéarisation des contractions locales dû à Hartman et expliquons comment en simplifier la démonstration.
Abbaci, Brahim 1
@article{CRMATH_2004__339_11_781_0, author = {Abbaci, Brahim}, title = {On a theorem of {Philip} {Hartman}}, journal = {Comptes Rendus. Math\'ematique}, pages = {781--786}, publisher = {Elsevier}, volume = {339}, number = {11}, year = {2004}, doi = {10.1016/j.crma.2004.10.010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.10.010/} }
TY - JOUR AU - Abbaci, Brahim TI - On a theorem of Philip Hartman JO - Comptes Rendus. Mathématique PY - 2004 SP - 781 EP - 786 VL - 339 IS - 11 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.10.010/ DO - 10.1016/j.crma.2004.10.010 LA - en ID - CRMATH_2004__339_11_781_0 ER -
Abbaci, Brahim. On a theorem of Philip Hartman. Comptes Rendus. Mathématique, Tome 339 (2004) no. 11, pp. 781-786. doi : 10.1016/j.crma.2004.10.010. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.10.010/
[1] B. Abbaci, Variétés invariantes et applications, Thèse, Université Paris 7, 2001
[2] B. Abbaci, A generalization of a theorem by Hartman and some applications, in preparation
[3] Variétés stables et formes normales, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 87-92
[4] Invariant manifolds revisited, Proc. Steklov Instit., Volume 236 (2002), pp. 415-433
[5] M. Chaperon, Stable manifolds and the Perron–Irwin method, in: Ergodic Theory and Dynamical Systems in memory of Michael R. Herman, in press
[6] On Irwin's proof of the pseudo-stable manifold theorem, Math. Z., Volume 219 (1995), pp. 301-321
[7] On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mex., Volume 5 (1960), pp. 220-241
Cité par Sources :