Voir la notice de l'article provenant de la source Numdam
The homogenization of periodic dielectric structures in harmonic regime usually leads to an effective permittivity tensor . It has been observed by Bouchitté and Felbacq [Waves Random Media 7 (1997) 245–256], that in the high contrast case (high conductivity fibers), this tensor depends on the angular frequency ω. In this Note, we enlight a new effect induced by microscopic resonances which leads in parallel to a possibly negative effective permeability (although the original medium is assumed to be nonmagnetic i.e. ).
L'homogénéisation de structures diélectriques périodiques en régime harmonique fait apparaitre en général un tenseur de permittivité effective . Il a été remarqué par Bouchitté et Felbacq [Waves Random Media 7 (1997) 245–256] que dans le cas de forts contrastes (fibres de grande conductivité), ce tenseur peut dépendre de la fréquence ω. Dans cette note, nous mettons en évidence un effet nouveau dû à des micro-résonances et qui conduit, malgré l'absence initiale de propriétés magnétiques (i.e. ), à une perméabilité effective qui peut éventuellement être négative.
Bouchitté, Guy 1 ; Felbacq, Didier 2
@article{CRMATH_2004__339_5_377_0, author = {Bouchitt\'e, Guy and Felbacq, Didier}, title = {Homogenization near resonances and artificial magnetism from dielectrics}, journal = {Comptes Rendus. Math\'ematique}, pages = {377--382}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.06.018}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.018/} }
TY - JOUR AU - Bouchitté, Guy AU - Felbacq, Didier TI - Homogenization near resonances and artificial magnetism from dielectrics JO - Comptes Rendus. Mathématique PY - 2004 SP - 377 EP - 382 VL - 339 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.018/ DO - 10.1016/j.crma.2004.06.018 LA - en ID - CRMATH_2004__339_5_377_0 ER -
%0 Journal Article %A Bouchitté, Guy %A Felbacq, Didier %T Homogenization near resonances and artificial magnetism from dielectrics %J Comptes Rendus. Mathématique %D 2004 %P 377-382 %V 339 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.018/ %R 10.1016/j.crma.2004.06.018 %G en %F CRMATH_2004__339_5_377_0
Bouchitté, Guy; Felbacq, Didier. Homogenization near resonances and artificial magnetism from dielectrics. Comptes Rendus. Mathématique, Tome 339 (2004) no. 5, pp. 377-382. doi : 10.1016/j.crma.2004.06.018. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.018/
[1] An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992) no. 5, pp. 481-496
[2] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518
[3] Photonic band-gaps effects and magnetic activity in dielectric composites, J. Phys. Condens. Mat., Volume 14 (2002), pp. 4035-4044
[4] Mathematical Methods in Electromagnetism. Linear Theory and Applications, Ser. Adv. Math. Appl. Sci., vol. 41, World Scientific, 1996
[5] Homogenization of a set of parallel fibers, Waves Random Media, Volume 7 (1997), pp. 245-256
[6] Magnetism from conductors, and enhanced non-linear phenomena, IEEE T. Microw. Theory, Volume 47 (1999), pp. 2075-2084
[7] Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett., Volume 78 (2001), pp. 489-491
Cité par Sources :