Voir la notice de l'article provenant de la source Numdam
Asymptotical properties of orthogonal polynomials from the so-called Szegő class are very well-studied. We obtain asymptotics of orthogonal polynomials from a considerably larger class and we apply this information to the study of their spectral behavior.
Les propriétés asymptotiques des polynômes orthogonaux de la classe de Szegő sont très bien étudiées. Nous obtenons les asymptotiques des polynômes orthogonaux appartenant à une classe considérablement plus large. Ensuite, nous appliquons cette information à l'étude du comportement spectral de ces derniers.
Denisov, Sergey 1 ; Kupin, Stanislas 2
@article{CRMATH_2004__339_4_241_0, author = {Denisov, Sergey and Kupin, Stanislas}, title = {Orthogonal polynomials and a generalized {Szeg\H{o}} condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {241--244}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2004}, doi = {10.1016/j.crma.2004.06.004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.004/} }
TY - JOUR AU - Denisov, Sergey AU - Kupin, Stanislas TI - Orthogonal polynomials and a generalized Szegő condition JO - Comptes Rendus. Mathématique PY - 2004 SP - 241 EP - 244 VL - 339 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.004/ DO - 10.1016/j.crma.2004.06.004 LA - en ID - CRMATH_2004__339_4_241_0 ER -
%0 Journal Article %A Denisov, Sergey %A Kupin, Stanislas %T Orthogonal polynomials and a generalized Szegő condition %J Comptes Rendus. Mathématique %D 2004 %P 241-244 %V 339 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.004/ %R 10.1016/j.crma.2004.06.004 %G en %F CRMATH_2004__339_4_241_0
Denisov, Sergey; Kupin, Stanislas. Orthogonal polynomials and a generalized Szegő condition. Comptes Rendus. Mathématique, Tome 339 (2004) no. 4, pp. 241-244. doi : 10.1016/j.crma.2004.06.004. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.06.004/
[1] Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl., Volume 362 (2003), pp. 29-56
[2] Necessary and sufficient conditions in the spectral theory of Jacobi matrices and Schrödinger operators, Int. Math. Res. Notices, Volume 22 (2004), pp. 1087-1097
[3] Orthogonal Polynomials, Consultants Bureau, New York, 1961
[4] Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in , J. Approx. Theory, Volume 108 (2001) no. 2, pp. 161-248
[5] F. Nazarov, F. Peherstorfer, A. Volberg, P. Yuditskii, On generalized sum rules for Jacobi matrices, submitted for publication
[6] B. Simon, Orthogonal polynomials on the unit circle, Amer. Math. Soc. Colloq. Publ., in press
[7] Orthogonal Polynomials, American Mathematical Society, Providence, 1975
Cité par Sources :