Differential Geometry
On the asymptotic expansion of Bergman kernel
[Sur le développement asymptotique du noyau de Bergman.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 193-198.

Voir la notice de l'article provenant de la source Numdam

We study the asymptotics of the Bergman kernel and the heat kernel of the spinc Dirac operator on high tensor powers of a line bundle.

On étudions les développements asymptotiques du noyau de la chaleur et de Bergman de l'opérateur de Dirac spinc associé à une puissance grande d'un fibré en droites positif.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.05.011

Dai, Xianzhe 1 ; Liu, Kefeng 2, 3 ; Ma, Xiaonan 4

1 Department of Mathematics, UCSB, California, CA 93106, USA
2 Center of Mathematical Science, Zhejiang University, China
3 Department of Mathematics, UCLA, California, CA 90095-1555, USA
4 Centre de mathématiques, CNRS UMR 7640, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2004__339_3_193_0,
     author = {Dai, Xianzhe and Liu, Kefeng and Ma, Xiaonan},
     title = {On the asymptotic expansion of {Bergman} kernel},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {193--198},
     publisher = {Elsevier},
     volume = {339},
     number = {3},
     year = {2004},
     doi = {10.1016/j.crma.2004.05.011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/}
}
TY  - JOUR
AU  - Dai, Xianzhe
AU  - Liu, Kefeng
AU  - Ma, Xiaonan
TI  - On the asymptotic expansion of Bergman kernel
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 193
EP  - 198
VL  - 339
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/
DO  - 10.1016/j.crma.2004.05.011
LA  - en
ID  - CRMATH_2004__339_3_193_0
ER  - 
%0 Journal Article
%A Dai, Xianzhe
%A Liu, Kefeng
%A Ma, Xiaonan
%T On the asymptotic expansion of Bergman kernel
%J Comptes Rendus. Mathématique
%D 2004
%P 193-198
%V 339
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/
%R 10.1016/j.crma.2004.05.011
%G en
%F CRMATH_2004__339_3_193_0
Dai, Xianzhe; Liu, Kefeng; Ma, Xiaonan. On the asymptotic expansion of Bergman kernel. Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 193-198. doi : 10.1016/j.crma.2004.05.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/

[1] Berline, N.; Getzler, E.; Vergne, M. Heat Kernels and Dirac Operators, Springer-Verlag, 1992

[2] Bismut, J.-M.; Lebeau, G. Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297

[3] Bismut, J.-M.; Vasserot, E. The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle, Commun. Math. Phys., Volume 125 (1989), pp. 355-367

[4] Boutet de Monvel, L.; Sjöstrand, J. Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, Volume 34–35 (1976), pp. 123-164

[5] Catlin, D. The Bergman kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23

[6] Dai, X.; Liu, K.; Ma, X. On the asymptotic expansion of Bergman kernel | arXiv

[7] Donaldson, S.K. Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522

[8] Kawasaki, T. The Riemann–Roch theorem for V-manifolds, Osaka J. Math., Volume 16 (1979), pp. 151-159

[9] Lu, Z. On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273

[10] X. Ma, Orbifolds and analytic torsions, Preprint

[11] Ma, X.; Marinescu, G. The spinc Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664

[12] Ruan, W. Canonical coordinates and Bergman metrics, Comm. Anal. Geom., Volume 6 (1998), pp. 589-631

[13] Tian, G. On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990), pp. 99-130

[14] X. Wang, Thesis, 2002

[15] Zelditch, S. Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331

Cité par Sources :