Voir la notice de l'article provenant de la source Numdam
We study the asymptotics of the Bergman kernel and the heat kernel of the Dirac operator on high tensor powers of a line bundle.
On étudions les développements asymptotiques du noyau de la chaleur et de Bergman de l'opérateur de Dirac associé à une puissance grande d'un fibré en droites positif.
Dai, Xianzhe 1 ; Liu, Kefeng 2, 3 ; Ma, Xiaonan 4
@article{CRMATH_2004__339_3_193_0, author = {Dai, Xianzhe and Liu, Kefeng and Ma, Xiaonan}, title = {On the asymptotic expansion of {Bergman} kernel}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--198}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/} }
TY - JOUR AU - Dai, Xianzhe AU - Liu, Kefeng AU - Ma, Xiaonan TI - On the asymptotic expansion of Bergman kernel JO - Comptes Rendus. Mathématique PY - 2004 SP - 193 EP - 198 VL - 339 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/ DO - 10.1016/j.crma.2004.05.011 LA - en ID - CRMATH_2004__339_3_193_0 ER -
%0 Journal Article %A Dai, Xianzhe %A Liu, Kefeng %A Ma, Xiaonan %T On the asymptotic expansion of Bergman kernel %J Comptes Rendus. Mathématique %D 2004 %P 193-198 %V 339 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/ %R 10.1016/j.crma.2004.05.011 %G en %F CRMATH_2004__339_3_193_0
Dai, Xianzhe; Liu, Kefeng; Ma, Xiaonan. On the asymptotic expansion of Bergman kernel. Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 193-198. doi : 10.1016/j.crma.2004.05.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.05.011/
[1] Heat Kernels and Dirac Operators, Springer-Verlag, 1992
[2] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[3] The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle, Commun. Math. Phys., Volume 125 (1989), pp. 355-367
[4] Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, Volume 34–35 (1976), pp. 123-164
[5] The Bergman kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23
[6] On the asymptotic expansion of Bergman kernel | arXiv
[7] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522
[8] The Riemann–Roch theorem for V-manifolds, Osaka J. Math., Volume 16 (1979), pp. 151-159
[9] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273
[10] X. Ma, Orbifolds and analytic torsions, Preprint
[11] The Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664
[12] Canonical coordinates and Bergman metrics, Comm. Anal. Geom., Volume 6 (1998), pp. 589-631
[13] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990), pp. 99-130
[14] X. Wang, Thesis, 2002
[15] Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331
Cité par Sources :